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ABSTRACT

A procedure for the development of a simple boundary layer
turbulence model to account for different physical effects is
described; the method is applied here to produce models for both
pressure gradient and mainstream turbulence effects. Asymptotic
theory is used to isolate the leading terms in an expansion for
the mean velocity profile for high Reynolds numbers for both the
inner and outer regions of a nominally steady two-dimensional
boundary layer. The velocity profile in the outer layer satis-
fies a partial differential equation containing a Reynolds stress
term and this term is modeled by a simple eddy viscosity function
which contains two parameters. The velocity profile in the inner
wall layer is modeled using an analytical expression which has
been previously derived by consideration of the observed charac-
teristics of the time-dependent flow in the wall layer and which
contains a single independent parameter. For a self-similar
flow, the outer layer equation becomes an ordinary differential
equation; this equation is solved numerically and in conjunc-
tion with the analytical inner layer profile, a composite pro-
file spanning the entire boundary layer is defined. This com-

posite profile contains three parameters which may be adjusted

systematically to obtain a best fit to a given set of experimen-

tal data.




A computer optimization code is described in which any or
all of the three profile parameters may be varied. This optimi-
zation code may be used simply to obtain a close analytical
representation of a given set of data. The primary use described
here, however, is to develop correlations for various physical
effects from the results of the optimizations. In particular,
correlations for the effects of mainstream pressure gradients
and mainstream turbulence for the profile parameters are given.
In principle, these correlations may then be used in a predic-

tion method.
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1.  INTRODUCTION

Turbulent boundary layers occur in a wide variety of
engineering applications including, for example, flows over
turbine blades, airfoils, and in subsonic diffusers. In these
and many other situations it is important to be able to develop
the capability to accurately predict characteristics such as
skin friction, 1ift, drag, and the onset of boundary layer
separation. At present, the camplex nature of turbulence
seems to preclude any predictive analysis based on first prin-
ciples. For a turbulent boundary layer which is steady in the
time-mean sense, the classical approach to prediction has been
to attempt to deal with the Reynolds time-averaged equations
for the mean velocity components. These equations contain
unknown functions referred to as Reynolds stresses; physically
these terms are related to long time averages of products of
fluctuations of the velocity components about their mean values.
As a first step, the development of any prediction method |
requires a model to represent the behavior of the Reynolds
stress terms. The objective of this study is to develop an
approach which can be used to investigate the influence of
various physical effects on the turbulent boundary layer and
to incorporate these effects in a simple turbulence model.

To this end, a general optimization code is developed in

-1-




which the parameters in the turbulence modei may be varied
systematically to obtain the best representation of measured

mean profile data. As one example of how this code may be

used, the method is applied to determine the influence of
pressure gradients on the mean profile and a correlation for

pressure gradient effects is developed. As a second example,

! the method is applied to some recent constant pressure pro-
é file data with mainstream turbulence and a correlation is obtained
to reflect the effects of mainstream turbulence.

An immediate problem which arises in the modeling process
is that the dynamics of turbulent boundary layers are not well
understood. Previous investigators have attempted to resolve
this problem by postulating the functional form for the Reynolds
stress terms. These functional forms normally contain a num-
ber of unknown constants which are selected in a procedure often
known as "computer optimization." The details of this procedure
vary with the originator of the particular model and invariably
are not well documented. However, the general approach is
that particular data sets usually consisting of measured velo-
city profiles at numerous streamwise locations are “"predicted"
using various combinations of values of the "constants" asso-
ciated with a given model. Same type of subjective judgement

is then made as to which set of values of the constants best

e i La Sek e j
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"predict" as many data sets as possible. The approach adopted
in this study is rather different and will now be discussed in
detail.

An ideal approach to the modeling problem would be to
isolate the primary features in the time-dependent turbulent
flow and to pattern the turbulence model after motions which
reflect the true physics of the turbulent boundary layer. Such
a model would adequately replace the information lost in the

time averaging and would presumeably not contain or require a

Targe number of adjustable constants. This approach is par-
tially adopted in this study in the model used for the inner
region of the turbulent boundary layer.

Since the objective is to isolate which effects are impor-
tant and which are not for large Reynolds number, singular per-
turbation theory and the method of matched asymptotic expan-
sions are used throughout the present study. It is worthwhile 1
at this stage to summarize some of the main results concerning é
the asymptotic structure of the time mean boundary layer equa-
tions in the limit of large Reynolds numbers; these results
have formally been demonstrated by Fendell (1972) and Mellor
(1972). The turbulent boundary layer is a composite double

layer consisting of a relatively thick outer layer having a

thickness 0(u*), (where u* = uT/Ue(x) is the ratio of friction




to mainstream velocity) and a thin inner layer having a thick-
ness 0(1/(Re W), where Re is the Reynolds number. In the join-
ing region between the two layers, the velocity profile must be
logarithmic for a self consistent asymptotic description. The
complete mathematical results for the streamwise momentum
equations are summarized in s2. One particularly important
result concerns the inner layer and is that, to leading order,
the convective termms are negligible in the time mean equations;
consequently, if the mean profile is known in the inner layer,
the Reynolds stress may be calculated and vice versa. In the
present study, rather than a model for Reynolds stresses, a
model for the inner region velocity profile is used; this model
is based upon the observed coherent structure of the wall layer
flow and will now be briefly described.

Over the past decade, it has been well documented (see,
for example, Kline & Runstadler, 1959; Kline et al., 1967;
Corino & Brodkey, 1969; Willmarth, 1975) that there is a con-
siderable degree of ordered structure in the time dependent
flow in the wall layer of a turbulent boundary layer. In par-
ticular, it is well known that there are two important phases
assocfated with an observed cyclic behavior of the wall layer
flow. In the first phase, if attention is focused on a fixed

small area of the plate, the wall layer will be observed to




be in the quiescent state (Kline et al., 1967) for a majority
of the total observation time. During this quiescent period,

the wall layer streaks are observed with what appear to be

-

Jongitudinal counter-rotating vortices between the streaks, the

wall layer flow is relatively well ordered and no important

interactions occur between the wall layer and the flow in the

outer portion of the boundary layer; in this sfate, the wall

j layer may be regarded as passive. Eventually the second phase
occurs which is generally known as the bursting phenomenon and
which is characterized by a rapid and violent ejection from the
wall layer into the outer layer. The ejection is of relatively
short duration and is followed by an inrush of fluid from the
outer layer; the streak structure appears again very rapidly and
another quiescent period begins. Although many questions exist

i as to the causes and effects of these and other subsidiary

events, the gross features of the cyclic behavior described

above are nowwell established.

To incorporate such information in a prediction method

for the time-mean flow, it is necessary in principle to analyze

a typical event in the turbulence and then assess the contribu-

tion of this event to the time-mean quantities. To this end,

Walker and Abbott (1977) argue, by consideration of the observed

length and time scales in the wall layer, that during the

‘ quiescent period the equations for all three velocity components

| N
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must be linear and of the heat conduction type in the limit of
large Reynolds number; in other words, the convective terms

in the Navier-Stokes equations are negligible to leading order
whenever the wall layer flow is in the quiescent state. Walker
and Scharnhorst (1977) then go on to consider all possible
similarity solutions of these equations which are compatible
with theory and experiment; the similarity §olutions correspond
to the organized motion between streaks during the quiescent
period and are radically different from the oscillatory Stokes
type solutions which form the basis of the Van Driest (1956)
model. Walker and Scharnhorst (1977) compute a time-average

of the similarity solutions over a quiescent period and assess
which solutions produce an important contribution to the time-
mean profile and which do not. The final result is an analy-
tical model which will be giver in §2 for the inner region pro-
file and which contains a single parameter S that is related to
the mean period between bursts. The contribution to the mean
profile during the bursting process and breakdown of the wall
layer flow is neglected on the grounds that the breakdown is
of short duration relative to the quiescent period; note that
there are various theoretical reasons as well as a body of
experimental evidence that verify that the period of breakdown
must be small with respect to the quiescent period. On the




other hand, the vertical velocity (Walker & Abbott, 1977 and

Walker & Scharnhorst, 1977) is so small during the quiescent
period that there can be no contribution to the Reynolds stress
to leading order during this period of time and the major con-
tribution to the Reynolds stress must be made during the bursp-
ing process. Consequently, in this theoretical description of
the wall layer flow, the dominant contribution to the mean pro-
file occurs during the quiescent period, while the major con-
tribution to the Reynolds stress occurs during the breakdown
phase; both mean quantities are directly related to each through
the leading order time-mean equations in the wall layer (since
the convective terms are negligible to leading order).

In principle, it is desirable to develop a model for the
outer layer which is also based on the observed dynamics of
the time dependent flow in the outer region. However, the outer
region problem is more complex 5 it appears necessary to model
the Reynolds stress terms directly and unfortunately the dynamics
of the outer layer are not well understood. In the outer region,
large scale motions are observed which appear to be recirculating
agglomerations of numerous smaller scale structures; these
smaller scale structures have dimensions on the general magni-
tude of 100 wall layer units (y*) and appear at times to be

intensely vorticular in nature. At any stage, these small
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vorticular structures are in various stages of coalescence and
decay and when they pass close to the wall layer, are observed
to induce eruptions of fluid. A number of authors have sug-
gessted that it is the vortex motion in the outer layer which
induces the wall layer bursting (Nychas et al., 1973; Doligalski
& Walker, 1978; Walker, 1978) and leads to the creation of new
vortex structures in the outer layer; a regenerative mechanism
for the production of new turbulence has recently been proposed
by Doligalski, Smith & Walker (1981) and Doligaiski (1981) on
the basis of the obserwved unsteady effect of vortices on wall
boundary layers. Thes: studies demonstrate that for the vortex
motions considered (tw:-dimensional vortices convected in a uni-
form flow and in & shear flow and ring vortices above a plane
wall) that an eruptior of the boundary layer flow near the wall
will occur. However, these studies are as yet in an explora-
tory stage and, while a physical mechanism for the bursting

is indicated, it is not yet possible to develop a constitutive
model for the outer layer on this basis.

The bursting phenomena is a complex time-dependent viscous-
inviscid interaction between the inner and outer layers which
leads to the introduction of new vorticity into the outer layer
and which occurs intermittently. However, during these brief

periods of localized breakdown of the two layer structure, the




majority of the contribution to the outer layer (and inner

layer) Reynolds stress occurs. For this reason, the simplifi-
: cations which were possible in obtaining the wall layer model
are not possible and it appears necessary to consider a typical

burst and time average the results in order to model the u'v’

term. As discussed by Doligalski & Walker (1978) and Doligalski,
Smith & Walker (1981) the inviscid-viscous interaction is a
formidable theoretical prob]em at present; moreover, many other
aspects of the outer layer are still not well understood and,
at present, development of an outer layer model based on the
characteristics of time dependent flow in the outer layer is
not feasible.

For these reasons, a conventional type of eddy viscosity
model is used in the present study for closure in the outer
: layer; this type of model is used here because of its simpli-
g city and the good degree of success it has had in other pre-

diction methods. The eddy viscosity hypothesis is commonly

termed a first-order closure scheme; it assumes that there is

i
!
!
a functional relation between the Reynolds stress and the
‘ mean profile and further that the Reynolds stress may be written
’ as an eddy viscosity function times the mean velocity gradient.
Here a model for the eddy viscosity which is similar to the

i
1
!
‘ Cebeci-Smith (1974) and Mellor & Herring models (1968) will
|
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be adopted; this model is a monotonically increasing function

of the outer variable behaving linearly with slope « (the von
Karman "constant") near the logarithmic zone and approaching

a value K at the boundary layer edge. Note that the wall

layer profile model contains « in addition to the cycle time
parameter S. Consequently the present turbulence model contains
the three parameters (s,«,K).

It is common practice in many turbulence models to assume
constant universal values for the parameters appearing in the
model. Scharnhorst (1978), for example, has attempted a pre-
diction method with (s = 10.495, « = 0.41, K = .0168)(the latter
two values are also used by Cebeci & Smith, 1974); however, it
was determined (after the prediction method was compared to a
number of data sets,)that the velocity profiles were not well
predicted, particularly in flows with pressure gradient., The
objective of this study is to investigate a systematic way of
determining any trends in these parameters for various effects
such as pressure gradients or mainstream turbulence,with the
ultimate goal of obtaining correlations of these parameters
for use in a prediction method.

This will be carried out here in a somewhat different way
from previous investigations. It has become common practice

in recent times to determine values of "universal constants"

-10-




in turbulence models through a process known as computer

optimization; this procedure is often associated with turbu-
lence models that have a sizeable number of adjustable constants

(see, for example, Murthy, 1977) and is usually carried out

as follows. One data set or a number of data sets are chosen,

each of which consists of a number of measured profiles at
various downstream locations from some initial point; a pre-
diction method with a preassigned set of constants in the
turbulence model is started at the initial data station and
the downstream data is "predicted." On the basis of compar-
ison with either the integral parameters and/or the skin
friction coefficient, a decision is made as to whether adjust
the “constants" in the turbulence model to achieve better
"predictions"; the prediction method is then used to obtain
another "prediction" of the downstream data. This iterative
method continues until some optimal set of constants is

obtained.

One undesireable feature of this scheme is that the
basis for adjusting the constants is usually not clearly
defined and in any case is based upon comparisons with the
gross properties such as the integral quantities or quan-
tities obtained indirectly from experiment such as the skin

friction. The details of how the iterative process is carried




out and what criteria are used to decide on the optimal set of
constants are normally not supplied in the literature, parti-
cularly when the number of data sets involved are large; pre-
sumeably the choice is based ultimately on some type of inte-
grated subjective average.

In the present study, the trends in the turbulence model
parameters and eventually the correlations are also determined by
comparison to experimental data but the procedure is differ-
ent and precisely defined. First, only equilibrium data sets
are considered; an equilibrium turbulent boundary layer, by
definition, is a boundary layer in which the mainstream velo-
city varies algebraically with streanwise distance, Such a
boundary is expected (Clauser, 1956; Mellor, 1972; Fendell,
1972; Scharnhorst et al., 1978) to successively approach a
self-similar flow at large distances from wherever the boundary
layer flow is initiated. For this reason, equilibrium boundary
Tayers have historically been of considerable interest.

It is worthwhile to remark, however, that, in order for
self-similar velocity profiles to exist, equilibrium is a
necessary but by no means a sufficient condition, To expand
on this point, consider the case of laminar boundary layers
where similar solutions satisfy the well known Falkner-Skan

equation. The existence of such solutions in laminar flows
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has been discussed by Brown & Stewartson (1965) who argue that
similar solutions may be expected in two physical situations.
The first of these is at an x station where the velocity
profile is an initiator of the boundary-layer flow downstream;
such a situation occurs physically at the front stagnation
point of a bluff body or the leading edge of a flat plate, for
example. In these cases, the Falkner-Skan profile gives the
proper laminar boundary-layer solution at a point of attach-
ment of the mainstream and provides the initial condition to
initiate a boundary-layer calculation downstream. For tur-
bulent boundary layer., there appears to be no analogue of
this physical situation. In the absence of mainstream turbu-
lence, the flow at a point of attachment of the mainstream is
observed to be Taminar and when the downstream boundary-layer
flow is turbulent, there is a transition zone in between the
laminar and the turbulent flow. Moreover, a wide variety of
upstream experimental conditions can lead to transition and an
eventual fully-developed turbulent boundary layer downstream
for the same mainstream velocity distribution. Consequently,
there would appear to be no reason to expect that the flow in
the outer region of an equilibrium boundary layer will be self-
similar at the initial stations of a fully developed turbulent

flow.
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For laminar boundary layers, the other case discussed by

Brown and Stewartson (1965) is that where a similarity solution
becames what may be described as a terminator of a more general
boundary-layer flow and two cases of this behavior are con-
sidered by Brown and Stewartson (1965). A physical case where
this can occur is at a point of detachment of the inviscid flow;
examples of such behavior are known in magneto-hydrodynamic flow
(Leibovich, 1967a,b) and in rotating flows (Walker & Stewartson,
1972) at the rear stagnation point of symmetrical and two-
dimensional bluff bodies. Another case is flat plate flow and
here if the initial velocity profile at any arbitrary Tocation
on the plate is not given by the Blasius solution, then the
Blasius profile can only become the relevant solution at an
infinite distance downstream. For turbulent boundary-layer
flows, an analogous type of situation is expected; that is,
similarity solutions are only anticipated as terminators and
usually at large distances downstream from wherever the boun-
dary layer is initiated.

In practice, one would expect to be able to measure tur-
bulent boundary-layer profiles, at large distances downstream
of the transition zone, which become arbitrarily close to
being self-similar; however, near the transition zone, there
is no reason to expect a self-similar behavior. In zero
and favorable pressure gradients, measured profiles in an

equilibrium flow should increasingly approach self-similarity

-14-
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at subsequent data stations downstream. In adverse pressure
gradient flows, there is an additional difficulty in that
reversed flow and boundary layer separation may occur before
similarity is achieved.

The self-similar flow is particularly attractive insofar
as turbulence model development is concerned because the para-
boiic partial differential equation governing the turbulent
boundary layer flow becomes an ordinary differential equation
of the boundary value type. In the present study, the ordinary
differential equation associated with the outer layer is solved
numerically for a given set of the turbulence model parameters
(«,K) to determine an outer layer velocity profile; this outer
layer profile is matched with an inner layer profile containing
the inner profile parameters (s,<) and a composite velocity
profile for the entire boundary layer is defined. The com-
posite profile is then compared directly to measured experi-
mental velocity profile data and a r:2t-mean-square error is
defined as a criterion of how well the profile represents the
data. The optimization procedure then adjusts one or more
of the three profile parameters (s,c,K) until a "best fit"
to each profile is obtained. Once this procedure has been
carried out for several data stations, the results are plotted

to determine any trends in the profile parameters; the
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objective here is to obtain correlations for the turbulence

model parameters for use in a prediction method. In the

present study, this procedure is carried out for two situations
and correlations are obtained for « and K for the effects of 11
' pressure gradients and mainstream turbulence. Note that this )
; type of procedure is only appl}cable to measured profiles for L
’ which the mainstream velocity is of the equilibrium type and
where the data is at locations far downstream of wherever the
turbulent boundary layer was initiated. The final correla- }
tions for the effects of pressure gradients and mainstream tur- )
bulence lead to excellent representations of the velocity pro- -
file data. In principle, the models developed here may be B

used in a prediction method for non-equilibrium flows.

crcah .

The plan of this report is as follows. In §2, the basic

L

equations and principle results of the asymptotic theory are

summarized. In §3 the optimization procedure is described

and in §4 and §5 the results of the method for pressure gradients

oy

and mainstream turbulence effects respectively are given. A

description and test cases for the optimization code are given

in Appendices C and D. Finally, the conclusions of the study

are discussed in §6.
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2. THE TURBULENT BOUNDARY LAYER TIME MEAN EQUATIONS

2.1 Basic Equations

The turbulent boundary layer equations governing two-
dimensional, incompressible time-mean flow are the mass continu-

ity equation and the Reynolds equation for streamwise momentum:

v

au -

ax+ay—0, (2.])
=3, 3,y e 1 3%, 3
Uax P Vay T U ax Y Reay? Ty (2.2)

In these equations, (x,y) represent Cartesian coordinates with
corresponding mean velocities (u,v). A1l lengths and velocity
components have been made dimensionless with respect to L and U,,
a reference length and velocity respectively. The Reynolds num-
ber is defined as E%E and is assumed to be large; here v is the
kinematic viscosity. The momentum equation (2.2) contains an
additive stress term o for turbulent flow which is related to

the usual turbulent shear stress by
PEETATA (2.3)

In equation (2.3) the primed quantities are instantaneous velo-
city fluctuations about the corresponding mean values and the

over bar signifies a long time average. The boundary conditions

-17-
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associated with the equations (2.1) and (2.2) are

= u(x,0) = v(x,0) =0,
¥ (2.4)
' u(x,y) > U (x) as y + = .

In addition to the above boundary conditions, the turbulent

shear stress term must be chosen to satisfy

o(x,0) =0, o(x,y) >0 as y + = ., - {(2.5)
To completely specify the problem, an initial velocity profile
u(0,y) = f(y) for 0 <y <= , (2.6)

must be given at some x-station in the fully turbulent region

of the flow which is denoted here by x=0. Note that the problem is
indeterminate until a model for the Reynolds shear stress term

is specified; however, it is possible through asymptotic analy-
sis of this problem to provide useful information about the
velocity components and shear stress without the introduction

of any specific functional form for the Reynolds stress term.

Before this is carried out, it is desirable to define an impor-

tant physical parameter, u*, that will play an important role

in the asymptotic analysis. The dimensional wall shear stress

is given by
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T = L _:% L4 (2.7)

u_ = V'rw7p ’ (2.8)

where Wy and represent the dynamic viscosity and density at

Pw
the wall respectively. A dimensionless skin friction velocity

can be defined as

u
* T
u = . (2.9)
UOU,(xf
Note that equation (2.7) can be rewritten in an equivalent form
as
*2.2 1 au
u U, =-R—-~ . (2.]0)

The asymptotic structure of equation (2.2) in the limit of large

Reynolds number will now be considered.

2.2 Asymptotic Structure of the Time-Mean Equations

It is well known that the turbulent boundary layer is a
composite double layer consisting of a thin inner layer adjacent
to the wall and a relatively thick outer layer. A number of

authors, including Fendell (1972) and Mellor (1972), have




considered the asymptotic structure of the time-mean momentum

equations for a constant property incompressible flow; in these
studies, asymptotic methods are used to isolate the leading terms
in an expansion for large Reynolds number for the flow quantities
in both the inner and outer region of the turbulent boundary
layer. These egpansions are then matched in a manner which is
consistent mathematically and which is also consistent with
experimental measurements of the time-mean flow quantities for
both regions. Fendell (1972) also examines the conditions
necessary for self-similar flow in the outer region. The asymp-
totic results that follow summarize the work of Fendell (1972)
and are also discussed by Scharnhorst et al (1978).

In the outer region of the turbulent boundary layer, the
velocity profile may be written as a small perturbation about

the mainstream value as Re + =, according to,

i oF,
U = Ua(x){1+u*(x;Re) Ty (x,n) + ...}, (2.11)

Here u* is the dimensionless skin friction velocity defined by
equation (2.9) and u*+0 as Res=. In the outer region, the tur-

bulence term ¢ may be written to leading order as
o = Ua2(x){u*2(x;Re)zy(n,x)+ ...} . (2.12)

Here n is the scaled normal coordinate for the outer region

-20-
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defined by,
n= y/A0 . (2.13)

The dimensionless outer region length scale Ao is proportional
to the boundary layer thickness and is 0(u*); a convenient
choice for Bq is made in section 2.4. It is of interest to note
that the shear stress term given in (2.12) is equivalent to the
result that u'v" is O(u2_) which, in general, is confirmed by
experimental measurement. When the velocity profile expansion
(2.11) and the turbulence term expansion (2.12) is substituted
into (2.2) and terms quadratic in the perturbation u* are neg-

lected, an equation for the velocity defect function up = aF1/an

is obtained according to

3L, 8, o 21 211 ) a2F] Ao aZF]
0 - vy W) 5 - g (Ueo) ' 5o * ¥ e -
(2.14)
Here a prime denotes differentiation with respect to x.
This equation is subject to the boundary conditions
F](X,n) +0asn=+0, (2.]5)
and
aF1
Ty (xsn) >0 as n+e . (2.16)
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In the inner layer, sometimes referred to as the wall layer,
the velocity profile and turbulence stress term expansions may

be written to leading order according to

u = u*Ua(x) ;;;-(x,y+) L (2.17)
and

o= Umz(x)u*o](x,y+) + e (2.18)
where

yt= u—TL—y = Re u*Ua{x)y , (2.19)

v

is the inner region variable. The matching of the leading order
terms in the asymptotic expansions (2.11) and (2.17) and (2.12)
and (2.18) occur in the limits n+0 and y*+« for the inner and
outer Tayers respectively. A self consistent mathematical
structure which is compatible with experimental measurement may
be obtained if both velocity profiles merge smoothly with a

logarithmic profile behavior according to

uy - ;i&y-]og n + Co(x), asn-+0, (2.20)
and
ut - ;i&y-log yt+C; (x), as Yo, (2.21)

Here «, Co and C.i are in general functions of x. Although «
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is analogous to the von Karman "constant" which is normally
assumed to have a value of about 0.41, in general « could
depend on local flow conditions. It is worthwhile to note that
the conditions for the turbulence terms also follow from the

analysis (Fendell, 1972) and are

Z-I+1 as n-+0, (2.22)
and

op 1 as yt+ o (2.23)

First order matching of the inner and outer asymptotic

expansions leads to the velocity match condition given by,

-g; = Ei&7-1og{Ao Re u*Us(x)} + €;-Cy (2.24)

This skin friction relation connects u* and the outer region
length scale by The match condition to leading order as Re + =

implies that

* _ _kx
R (2.25)

and since By is 0(u*) the turbulent boundary layer thickness
approaches zero as the inverse of a logarithm in the high
Reynolds number limit.

A composite velocity profile valid to leading order across

the entire boundary layer can be formulated. Van Dyke (1975)
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defines a composite expansion according to L

- 4

| [composite expansion] = [inner expansion]

.
pa

z + [outer expansion] - [common terms]. (2.26)

[ st

The common terms represent the behavior of the inner and outer

L]
'y

i
!
i expansions in the matching region. A composite streamwise
)

velocity profile is defined here according to,

Y onsan

E = u*Um[U*' + Uy - { ;(‘;)- Tog n + C, }] (2.27) L
|

'l' Alternatively, an equivalent expression could be composed by 3

using equation (2.24) for the common terms in terms of the inner h

region variable y*. E

The question of determining good model profile approxima- $

tions for the inner profile U* and the outer profile U] will t

now be considered.

2.3 Similarity in the Outer Region

The model profile that will be used for the outer region
flow is a self-similar profile and for this reason it is of

interest to examine the conditions necessary for self-similar

flow in the outer region. The terms self-similar and equilibrium

are often used interchangeably in the literature but it is important to

make a distinction here. The termequilibrium is understood to apply




to a turbulent boundary layer for which the mainstream velocity
behaves as Uo(x) ~ x* or Ug(x) ~ e®® where o and g are constants;
on the other hand, self similarity of the outer layer velocity
profile can only occur when the boundary layer is exposed to
the equilibrium outer velocity contributions for large stream-
wise distances. Consequently, equilibrium is a necessary but not
sufficient condition for the existence of self-similar profiles.
The necessary conditions for similarity follow from equa-

tion (2.17) for U1 and are that,

A
awzﬁ;z (u*Us2)' = -28 = constant (2.28)
and
0 (85 Ua)' = @ = constant. (2.29)

To assess the magnitude of the ratio u*'/u* which appears in
equation (2.28), the match condition, given by equation (2.24),
is differentiated with respect to x to obtain,

* ! . A ! " Uco'
- :—*2' = —:2‘ 109{A0Re u*Us(x)} + % { Ao + uu* + 0= }+c1 '-co"
0

(2.30)

This equation can be simplified by using the match condition (2.24)

to eliminate the first term on the right hand side and this pro-

cedure yields
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- + K'(Ci~co)+n(ci-co)'}.
(2.31)
Since « must approach a constant for a self-similar flow, the
order of magnitude of the ratio u*'/u* follows from equation
(2.31) and
’* |

EuT = Ou*). (2.32)

Terms containing this ratio may be neglected to leading order

in (2.28) and (2.29) which become

u_'
Qg -8 (2.33)
and
U,'
q'+-U— q=a (2.34) .

respectively where q = Ao/u*. These two equations are combined
to give

Q' =a+B . (2.35)

As a result, there are only two types of mainstream velocity
distributions which can lead to self-similar solutions in the

outer layer and these are:
a .
Ua(x) = Dy(x-x,) Dfora+8#0 (2.36)

where
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-8 Bo
S as e (wedlxx)  (2.37)
and
‘GZX
Us(x) = Dze fora+8 =0 (2.38)
where
8 A9
Ay = 3 q-= - % - (2.39)
0

Here D], 02’ and X are all arbitrary constants.

Equilibrium flows have been examined experimentally for a
number of years and an equilibrium boundary layer has been
defined experimentally as a flow in which the dimensionless velo-
city defect (Ue- fl*)/uT expressed as a function of y/§ becomes
close to being invariant with downstream distance. After careful
experimentation, Clauser (1954,1956) concluded that the criterion
for equilibrium was a constant value of the parameter 8c which

is defined as

s*  dUg
Be = - @@ Ve dx - (2.40)

T

Here &* represents the dimensionless displacement thickness

defines as

-]

o = j (1 - maﬂ)dy . (2.41)

[o}

From the definition of &* and equations (2.11) and (2.13) it
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follows that,

*
8 = =agu*Fi(x,=) + ... . (2.42)

As self-similarity conditions are approached, the x dependence
must vanish and F](x,w) must approach a constant value, say F1(w).
Thus (2.40) becomes
84 F1(m) du,, _
Be =~ o dx - "B F1(w) . (2.43)
Note that a constant value of g implies a constant value of Be
and therefore Clauser's (1954,1956) experimental results are

consistent with theory.

2.4 The Eddy Viscosity Model for the Quter Region

In order to obtain a solution of the outer layer equations,
a constitutive relation for u'v' in the outer layer must be
specified and for the reasons discussed in section 1, a simple
eddy viscosity model will be used here. It is worthwhile to
note that although it is customarily assumed that some functional
relationship exists between u'v' and the mean velocity profile,
no such relationship has been demonstrated either experimentally
or theoretically; consequently, the eddy viscosity hypothesis
should be regarded at present as a convenient approximation

which is expected to be supplanted in the future by constitutive
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models based on the observed coherent structure of the turbulent
boundary layer.

For the outer region, the Reynolds stress is defined as

U -
-u'y’ = €9 T?-§§-= U02 o (2.44)

and from equations (2.12) and (2.13), the stress function A

becomes
€9 aU]
AOUOUw(x)Lu* an

Iy = (2.45)

where €9 depends upon both x and n. The functional form for €0
is the same type as that used in the Cebeci-Smith (1969) and
Mellor and Herring (1969) prediction methods. In this model,

e. is selected to approach a constant value for fixed x near

0
the outer edge of the outer layer. Thus,

ey > K Ue(x)G*L (2.46)

where ¢* is the dimensionless displacement thickness and K is

an empirically determined constant. The value of K differs
slightly according to the model; Cebeci and Smith (1969) take

K = 0.0168 while Mellor and Herring (1968) use K = 0.016. In

the present study, a universal value for K is not assumed; rather
one objective is to determine if this parameter depends in any

way on the pressure gradient.

=29~
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Near the inner edge of the outer layer, the eddy viscosity
must behave linearly to satisfy the matching condition for Dl
given in equation (2,22); it is convenient to define a dimension-

less eddy viscosity function e(n) according to

€
_ 0
e(n) = TFUUu(xIT ° (2.47)
whereupon equation (2.45) becomes
&% BU.I
E:-l = arA—' E(n) W . (2.48)
0

The function e(n) must assume the following limiting values:

u*Ao
€ +Kn (—6;.—) as n-»>0 (2.49)
and
€ - K as n <> o . (2-50)

A particularly convenient choice for the outer region

length scale Ay is

6*
8 = I , (2.51)

and it follows that F](x,eo)=-1 from equation (2.42). Detailed reasons
behind this choice for 4, are discussed by Scharnhorst et al.
(1978) and Scharnhorst (1978) and Weigand (1978). Equations
(2.45) and (2.49) may now be rewritten as
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3U1
£y = e(n) ETY (2.52)
and
€+Kkn aS n+o, (2.53)

In general, the functional form of ¢{n) must be specified. The
model of Mellor and Gibson (1966) and Mellor and Herring (1969)

use a simple form of two straight lines defined by

<( K for nzny (2.54)

e(n) = ¢ _(n) =
m lrn for r|<r|1,

where ny = K/c. An awkward feature of this model lies in the dis-
continuous derivative at n = b which may be expected to give
rise to difficulties in a numerical solution of the outer layer
equation; this problem is handled by Cebeci and Smith (1974)

by using an artificial smoothing of the model in equation (2.54).
An alternative functional form for e(n) must reflect the linear
behavior near n=0 in equation (2.53) and the limiting constant
value in equation (2.50) for large n; moreover, such a function
should be monotonically increasing with n. A rather complex
function meeting these requirements was assumed by Scharnhorst
et al. (1977) who, in addition, determined that it appeared to

be desireable for e¢(n) to approach the linear behavior kn expo-

nentially quickly for small values of n. It also appeared

Ak




important for e(n) to approach the upper bound K relatively
quickly for large n.

A particularly simple form of a function that satisfies
all the desired features of e¢(n) is

T AR T
e(n) = kn{l-e } (2.55)

which is plotted in Figure 2.1 for integral values of N = 1, 2,
and 4. Here, the term C is given by
N
c= & . (2.56)
This monotonically increasing function (2.55) meets the require-

ments as n -0,
e(n) > «n» (2.57)

and as n + =,
‘ ]
(n) > K1 + 0(—p)} . (2.58
e(n ;mﬁ )

Note that this function for N=4 is virtually identical
to the form used by Scharnhorst et al. (1977) but is a much
simpler form.

The outer region eddy viscosity function given by equation

(2.55) was used throughout this study with N=4.
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2.5 Outer Layer Similarity Model

With the outer layer stress function defined by equation
f (2.52), it may be shown that the outer layer equation (2.14)
becomes
, 5. 3, (Uet)) ! U, & (u*UmZ)‘ A aU]
: = {e(n)5=1 + ——r—n—'—;z'u—-z— X
an an u*U 1° ’
(2.59)

where Uy = 3F;/an. For a self-similar flow, equation (2.59)
reduces to the ordinary differential equation

du du
4. S, e 1
et gr-sdng+28 U =0, (2.60)

where B. is the Clauser pressure gradient parameter obtained
from equation (2.40) as B = -6*Us'/(u*2Us). Integration of

! equation (2.60) across the boundary layer yields the relation

* 0

>r=1+ 3Bc s (2.61)

= {O»

which can be substituted back into (2.6L, to obtain

dU-I dU-l
an {e(n) Hn—} + (1+28c)n Hn_+ ZBC U-I = 0. (2.62)

To find the velocity profile in the outer region, equation

o — e —

(2.62) must be solved subject to the boundary conditions,

-34-

= er—————

“‘Mﬂ,’v i N




U|~1?1ogn+co as n 0, (2.63)
U.l->0 as n-+w (2.54)

Note that the constant Co is unknown. This problem was solved
by a combination of a series solution near n=0 and a fully numer-
ical solution for n>0; the procedure is described in Appendix A.
Note that there are two parameters associated with equation
(2.62) and the boundary condition (2.63); these are the eddy
viscosity parameters K and the von Karman constant « which appears
in the eddy viscosity and in the boundary condition. In addi-
tion to the physical boundary layer quantities, the skin friction
u_ and the displacement thickness are contained in the parameter
B¢ which is defined in equation (2.40) and which appears in equa-

tion (2.62).

2.6 Wall Layer Model

The wall layer model used in this study incorporates what
are believed to be the important features of the time dependent
flow in the wall layer. A complete discussion of the ideas that
develop the unsteady wall layer model is given in Walker, Abbott
and Scharnhorst (1976), Walker and Abbott (1977), and Walker
and Scharnhorst (1977). This “unsteady wall layer model" has
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been extensively compared to experimental data by Scharnhorst
et al. (1977) who demonstrate that the model closely represents
measured velocity profile data in the wall layer even in flows
with pressure gradient; moreover, the representation is con-
siderably better than that obtained by a conventional Van Driest
(1956) type of model and, finally, the model is simpler to use.
For these reasons, this "unsteady wall layer model" was used
exclusively in the present study.

The profile given by Walker and Scharnhorst (1977) is

+
ut = [1+ %’TJ[R(SZ.t;)o(H) + Z(H) + P(S2,t,*)W(H)]
+
- 5 [R(O,t,1)Q(H,) + Z(H) + P(0,t *)W(H )],  (2.65)

where
H=._+L_ , Ho=_¥+_ (2.66)
2/5%%E,T 2/t ¥
and
2. ¢ 4) = 1 Yo 1 4(c240¢ +
R(S oty ) = Cj = {3 - log 2} + 5 P (S 2t )
+ 5 Tog (S2+t,%) , (2.67)
Q(H) = (2H2+1) erf H + 2 4 e | (2.68)
VX
2(H) = =L [(2H241)2(H) + He' (H)- 2L (6H2+1)erf H - 3 &™),

KY'T

(2.69)
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P(s2,t,%) = - § pF(s2at *) (2.70)
-H2
W(H) = [H%+3H2+ Jerf H - -vf/'—; [+ 37”32 (2.71)

1

In the equations above, the = function is defined as

h o 2 J 2
z(n) = I e X [ oY f e 4t dy dx . (2.72)
0 0 0

1

A detailed description of the = function and its properties is
given in Appendix B. For large y* in the inner region, the
asymptotic form of the profile (2.65) is

Ut - Lyog yt ¢y . (2.73)
Note that the model contains « and Ci as parameters in addition
to to+ and S; these last two parameters are associated with
the physics of the wall layer time dependent flow and are dis-
cussed in detail by Walker and Scharnhorst (1977) and Scharnhorst
(1978). The mean velocity profile of (2.65) must satisfy

aut _
'57:; . =1, (2.78)
y =
and the wall compatibility condition
3+
2 \ =0, (2.75)
) y+=0
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which leads to the auxiliary relations

(s2+t MHR(S2,8,%)- - + P(52,t,*)]
- (£, R0, t,1)- 1+ p(0,t )] = T 52, (2.76)
and

(52+t0*)-*[R(sz,to*)+ 3P(s2,t,1)]
- (to")-%[R(O,tO*) +3P(0,t ") =0 , (2.77)

respectively. Note that equations (2.76) and (2.77) are two
relations for the four parameters «, C;, S, and to+ and conse-
quently only two of these parameters are independent. In the
data comparisons that are carried out here, « and S were gener-
ally assumed to be variables that were adjusted to obtain the
best fit to the data; thus, at any stage in the optimization
procedure for specified values of « and S, equations (2.76)

and (2.77) were solved for t,* and Cy

2.7 Summary
A composite similarity velocity profile valid to leading

order for the entire boundary layer has been developed in this

section according to

- _ % [+ 1 '
u-uU..,E +U] -{mlognw‘co}]. (2.78)
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Here U* is the unsteady wall layer model given in section 2.6;
this model is an analytic expression given by equation (2.65)
which contains the independent parameters x and S. The outer
region profile U1(n) must be obtained as a numerical solution of
differential equation (2.62) developed in section 2.5; this
numerical solution will implicitly contain the parameters «

and K which appear in the eddy viscosity model. Thus, the com-
posite profile contains the three independent model parameters
S, « and K that may be adjusted in a computer optimization rou-

tine to obtain a best fit with experimental velocity profile data.
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3. THE OPTIMIZATION TECHNIQUE

3.1 Background

The present turbulence velocity profile model contains
three adjustable model parameters S, «, and K that affect the
basic shape of the analytical profile. This section addresses
the development of a systematic method to determine the optimum
values of the model parameters that minimize the difference
between the analytical model profile and experimental data.

The method described here can, in principle, be applied to any
test data to attempt to determine any trends in the data with
different physical effects; in particular, the procedure is
applied here to data for several pressure gradient flows and
mainstream turbulence levels.

Before examining the optimization method, a basis for
determining a best fit must be defined. For this study a root-

mean-square error ¢ was selected according to

U -y 2
o 1 N[ Uaraln) - Yanarvrica (3.1)
Vit Uy :

where
N = number of data points

aDATA = experimentally measured velocity at Yn
aANALYTICAL = analytical velocity profile at y,

Ue = freestream velocity .
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The best analytical fit to a given experimental profile is
defined as that set of model parameter values which minimizes
e as defined by (3.1). Previous prediction techniques such

as those presented in Scharnhorst et al. (1977) and those used
in the Stanford Conference (Coles & Hirst, 1969) utilize the
standard error criterion of (3.1) as an objective basis of
comparison. The particular optimization method used in this

study is presented in the next subsection.

3.2 The Optimization Method - Direct Search

A direct search minimization procedure was used to optimize
the composite velocity profile. This technique is simple to use
since it only requires values of the objective function and not
gradients to carry out the optimization search. The nature of the
problem is such that gradients of the objective function cannot be
computed analytically and can only readily be evaluated by
numerical differentiation. Although the direct search pro-
cedure becomes very time consuming when the number of optimiza-
tion variables is large, it was used here with good success
since the maximum number of variables is three. The basic
procedure in the direct search minimization was to vary one
model parameter such that the least squares error objective

function would continuously decrease while holding the other
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parameters constant. Each model parameter is varied in turn
so that at any stage in the optimization procedure, a one-
dimensional search is made for the minimum in that direction.
The method used here is somewhat similar to the direct search
method of Hooke and Jeeves which is described in Himmeblau (1972)
p. 142. The specific logic involved is as follows. A
The optimization scheme starts with initial values for
the model parameters which must be provided to the subroutine
as well as a vector of initial incremental step sizes for the
parameters. This initial location is established as a base
point. To initiate a search, the objective function fO(x) is
evaluated at this base point and one parameter X4 is then incre-
mented by the specified step size BXq- Suppose first that the
objective function decreases. The parameter X1 is incremented
continually according to x](i+1) = x1(i) + Ax] and the objec-
tive function f(i+]) = f(x1(i+1)) is computed. This process
continues for i =0, 1, 2, 3, ... as long as f(i) continually
decreases. Eventually, at a certain step, say step k, the
objective function will increase and f(k+1) > f(k). At this
stage, a local minimum in the X direction has been bracketed
in the range x1(k']) 5_x1(k) 5_x](k+1). To further refine
the location of this minimum, a quadratic interpolation poly-

nomial, f = Ax-l2 + Bx; + C is used, where A, B, and C are
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determined by solving the set of equations:

) 2 Ax](i)z +Bx ) e g (3.2)

where

i = k-1, k, and k+1

This interpolation polynomial produces a local minimum in the
xq direction .at x]* = -B/2A. In certain cases,this inter-
polation scheme may produce a value of x1* which is not close
to the midpoint of the interval x](k) or an objective function
which f(*) is not close to f(k). When this situation occurs,

* (k) () (k#1)
> ? 1

then three of the values Xy Xy , and x

which have the lowest objective function are relabeled as
x1(i°1), x1(i), and x1(i+1) and another quadratic interpolation
polynomial is fit through these values to obtain a new minimum
x]*. The interpolation scheme is repeated until a specified
convergence criteria is met between the values of x1* and

x](k) or f(x) and f(k). After convergence in the X1 parameter,
the new value of Xq is retained as the base point; the next
parameter Xo is incremented by the specified step size 8Xgs

and the search procedure repeats until all the independent
parameters have been changed.

In the second place suppose that an increase in the objec-

tive function is realized for the initial step of a model
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parameter (for example, x) from its base point. When this situa-
tion occurs, the search direction is immediately changed to the
negative direction and the program procedure continues as pre-
viously stated. In the event that the objective function increases
for the first step in the negative direction as well, the program
enters into the quadratic interpolating routine since the local
minimum has been bracketed in the range x;-Axy < X; < X; + ax;.
After the local minimum has been refined, a one-dimensional

search is carried out for the next variable.

After a one-dimensional search for each variable has been
carried out by the above procedure, a new base point is estab-
lished and a convergence test is performed in which the optimiza-
tion function values for the last two base points are compared.

! If these two values differ by an amount less than a specified
1 criterion, a minimum has been found and the program terminates.
If the convergence criterion is not met, the step sizes axj

of the search are reduced ten percent and the search procedure

- starts anew from the current base point.

The direct search program contains two types of error

flags. The first type of error flag is encountered when the

number of combined step and interpolation iterations reaches
a specified maximum value. This error flag then terminates

the optimization routine and returns to the prediction code
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with the latest values for the optimized parameters. The
second type of error flag occurs in the quadratic interpolation
| scheme when the value of the A coefficient of the quadratic

| polynomial is identically zero. This flag prevents a compu-
tation error in the interpolation process and terminates the
direct search program. One variable returned by the subroutine
is the error variable IER; values IER= 1 and IER = 2 indicate
errors of the first and second type respectively. A value

IER = 0 indicates a successful search has been completed. |

e e e e i i e ¢
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4. TURBULENT BOUNDARY LAYER PROFILE REPRESENTATION

4.1 Introduction

In order to obtain a velocity profile representation for a
given set of velocity profile data, one or more of the composite
profile parameters S, «, and K can be altered in several combina-
tions. Each such combination defines a different method of pro-
file representation; if a parameter is not optimized, it must be
assigned a universal value. In the study of Scharnhorst (1978),
one method considered was to take x=0.41 (the generally accepted
universal value for the von Karman constant) and S=10.4965; this
value of S is the value which with «=0.41 produces a value of
C; = 5.1 in equations (2.76) and (2.77); again C; =5.11sa
generally accepted value. Scharnhorst (1978) then carried out a
one parameter optimization on K over a wide range of pressure
gradient data; the results of this optimization were not encourag-
ing. The principal difficulty was that the analytical profile
tended to skew through the data in the logarithmic zone. This
difficulty was noted by Scharnhorst (1978) and is illustrated in
Figure 4.1; in this figure the results of a one parameter opti-
mization on K (with «=0.41, $=10,4965) are illustrated for three
stations of the data of Anersen et al (1972). These stations
are labeled 8109, 8209, and 8309 and are the last measured data

stations in equilibrium flows for zero, moderate and strong
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SLOPE=3.765

or «=0.266
SLOPE=2.725
x=0.367
2
8209
SLOPE=2.398
-~ x=0.417
310
o109
.~ SLOPE=2.347
o k=0.426
of ~
g Acdaaaasl Ak a2 aagat Aedaaaaaslh hed aaaasa]
1 10 100 1000 10000
Yo
FIGURE 4.1 Velocity profile comparisons for one parameter

optimization on K (with «=0.41, $S=10.4965) for
three data stations of Andersen et al. (1972).
Profiles are for a zero, mild adverse and strong
adverse pressure gradient flow; note procedure
is less satisfactory with increasing pressure
gradient.
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adverse pressure gradient flows respectively. It may be observed

from Figure 4.1 that the theoretical profile represents the con-

stant pressure profile well in the overlap zone but is increasingly

less satisfactory there as the pressure gradient becomes larger.
It may be observed from Figure 4.1 that for stations 8209 and
8309, a larger value of « appears to be indicated in order to
decrease the slope of the profile to conform to the data.

However, there are two main difficulties associatec with
the fitting problem and it is worthwhile to discuss these here
before proceding further. The first problem has been termed a
"low Reynolds" number effect by Scharnhorst (1978) and is asso-
ciated with a failure of the composite analytical profile to
adequately delineate various regions of the boundary layer. To
understand this last statement, consider profile 8309 in Figure
4,15 the solid straight line is apparently tangent to the curve
in the overlap zone of the profile. The inverse of the slope
of this straight 1ine may be obtained graphically and is indicated
on the figure as «=0.266; however, the value of « used to obtain
the profile in the figure was «=0.41. The reason for this diffi-
culty may be clearly observed in Figure 4.2 which illustrates
composite similarity profiles for two values of the Reynolds
number based upon the displacement thickness, s*, for fixed values

of B = 0, K= 0.016, and « = 0,41. In preparing this figure,
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a value of Re §* = 103 was chosen since it is typical of practical
flows that occur in engineering practice. For Res* = 103 the
range of y* that exhibits logarithmic behavior is apparently
relatively short and the slope of the analytical profile in this
region appears to be greater than the value 1/«. The reason for
this behavior is associated with the value of Res* which relates
the inner variable y* to the outer variable n by y* = Res*n.

For Reg* = 103, a value of y* = 100 would correspond to an outer
variable value of n=0.1; for this reason, the apparent range of
logarithmic behavior in Figure 4.2 for Reé* = 103 is relatively
short and significant portions of the inner and outer regions
blend together in the overlap zone. To show the effect on the
profile as the Reynolds number becomes larger, a composite simi-
larity profile is also presented in Figure 4.2 for a value of
Res* arbitrarily increased to 104, It may be observed that a
logarithmic region emerges over a wider y* range and that the
canposite similarity profile corresponds on the graph more
closely with the input log-law behavior.

A second difficulty associated with the fitting of the

composite profile is encountered with moderate to strong pressure
gradient flows where g, is 0(1). It may be observed in the

series solution for the outer profile given in equation (A.4)

C e




that for all Be # 0, the series contains terms of the form ain1

Tog n in addition to the purely logarithmic term (1/«)logn; two
points about these terms are germane. In the first place, it

may easily be verified that such terms arise in the series because
of the pressure gradient term in the outer layer equation and

i are not associated with the choice of turbulence model per se.

' Secondly, although ni logn - 0 as n + 0 for all i > 0, such terms

| do give a sign{ficant contribution for n # 0 and the purely

Togarithmic behavior of (1/x)log n will only be realized for

very small n. As previously indicated, for low Res*,very small

values of n will correspond to moderate (but not large) values

of y* and the logarithmic portion of the analytical profile

becomes obscure. As B¢ increases the difficulty becomes more

severe since it may easily be verified from equation (A.4) EE

that the a; become increasingly larger as Be increases. This

)
effect further causes the composite profile to deviate from l

u logarithmic behavior for small n.

The failure of the composite profile to reflect the true
input logarithmic behavior for low Reynolds number on a graph
is of some concern since the values of Reg* which are character-

istic of many experiments are 0(103) or 0(104). To attempt to

overcome these problems, Scharnhorst (1978) suggested two

approaches. In the first of these, a full three parameter
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optimization of S, x, and K was carried out. Generally this
procedure produces very good representations of the data;
however, as Scharnhorst (1978) points out, the parameters (S,«,K)
tend to lose physical significance in such method in two ways.
First the input value of « used to produce the profile is
not the apparent value that would be calculated from a graph of
the profile; this point has been illustrated in Figure 4.1.
Secondly, Scharnhorst (1978), upon plotting the values of S
obtained for profiles with various values of Bes observed a
trend for S to remain approximately constant or to actually
slightly decrease with increasing Be - This trend is opposite
to the experiments (Kline, et al. 1967) which suggest that S
should increase with increasing Be-
The second approach was suggested by Scharnhorst (1978)
as one possible way of overcoming the problems of the three para-
meter optimization and was attempted here. The main ideas are
that the parameter K primarily influences the quality of the
fit in the outer region while the parameter S mainly influences
the inner region; on the other hand, « influences the slope of
the profile in the overlap zone and consequently has an important
effect in both regions. The difficulties associated with the
strong influence of varying « and also with fitting this type of

profile have been discussed by Scharnhorst (1978) and Weigand
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(1978); one approach found to be acceptable for heat transfer
profiles (Wiegand, 1978) is to perform a one parameter optimiza-
tion on K holding « fixed; once the optimization had been com-
plete, a new value of « is obtained from a graph of the data in
inner region coordinates; note that in the optimization u_ will
vary and hence the graph of ut versus y* will change. This graph-
ical iteration process starts with a vaiue «=0.41 and continually
obtains new values of « from the slope of the data points in the
logarithmic region of the velocity profile. This approach is
denoted by method 1 in this study and the least square curve fit
error results of the first iteration are presented in Table 4.1,
First iteration curve fits for the last data station of the zero
and favorable pressure gradients of Andersen, et al. (1972) are
shown in Figure 4.1. Unfortunately method 1 failed for successive
graphical iterations since the new values of « from the slope of
the Togarithmic region do not provide improved curve fits; in
fact, the values of « taken from the data give a Tower value of

x than 0.41 although a larger value of « is suggested upon com-
parison of the data and the analytic profile. The lines drawn
tangent to the data in the logarithmic zone are depicted in figure
4.1 as broken lines. The failure of this procedure is again due
to the low Reynolds number effect for large Ber In the next sec-
tion, several other methods are discussed in an effort to obtain

improved composite profile data comparisons.
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4.2 Composite Profile Data Comparisons

Composite similarity profile representations were obtained
using several methods in which certain model parameters were
optimized using the direct search technique while holding others
constant. The five methods considered in this study for prorile

representations are:

1. Method 1 - one parameter optimization on K while hold-
ing S = 10.4965 and « = 0.47 constant;

2. Method 2 - two parameter optimization on « and K while
holding S = 10.4965 constant;

3. Method 3 - two parameter optimization on S and K while
holding « = 0.41 constant;

4, Method 4 - three parameter optimization on S, «, and
Ks

5. Method 5 - two parameter optimization on S and K while

holding « = 0.46.

To determine which method offers the best profile representations,
each method was run with the non-transpired zero, mild, and strong
adverse pressure gradient data of Andersen, et al. (1972)(labeled
8100, 8200, and 8300, respectively) and the favorable pressure
gradient data of Herring and Norbury (labeled 2700 after Coles

& Hirst, 1969). These data sets were chosen for several reasons.
First, in all data sets there is a relatively large number of
points in the inner layer and this is important in assessing the

performance of the unsteady wall layer model. In the second
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place, these data sets reflect a wide variety of pressure
gradients for equilibrium mainstream velocity distributions.
Thirdly, these data sets are relatively recent and are believed
to be very reliable. The least squares error ¢ is presented

in Table 4.1 for each of the five optimization methods. The
values of ¢ in parentheses represent recalculated values which
neglect the third and fourth data stations for the Herring &
Norbury (Coles & Hirst, 1969) 2700 flow and the first two data
stations for the Andersen, et al. (1972) 8100, 8200, and 8300
flows. These neglected data stations generally correspond to
upstream stations which are suspected of not being representative
of equilibrium behavior. The recalculated ¢ values are observed
to have a value close to that for the average ¢ representing all
data stations except for the 2700 series in which a substantial
improvement is noted.

By observing the curve fit error for the mild adverse
pressure gradient (8200 series) in Table 4,1, it is apparent
that substantial improvements in the quality of the fits can
be realized by varying more than one parameter. The best curve
fits are obtained with methods 2 and 4 in the sense that the
lowest Teast squares errors are obtained with these methods. A

similar trend may be observed for the strong adverse pressure

gradient (8300 series). Note that the RMS error increases in
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the range 50-70% for methods 1, 3 and 5 in going from the mild
to the strong adverse pressure gradient case; for methods 2 and
4, the percentage increase is 19 and 14 percent respectively.
The 8300 series is the most difficult case for profile represen-
tation because of the Tow Reynolds number effects and pressure
gradient effects which have increasing importance for larger
8. as discussed in §4.1. 'On the basis of the results in
Tables 4.1, methods 1, 3, and 5 may be ruled out as effective
parameter adjusting methods.

To further assess which of the surviving methods offers
the best profile representation, the complete profile optimiza-
tion results for methods 2 and 4 are given in Tables 4.2 through
4.9 along with the corresponding profile representations in
Figures 4.3 through 4.10. Evidently, the S, «, and K optimiza-
tion technique of method 4 has the lowest average root-mean-
square error, ¢; however, this result is not totally unexpected
since the adjustment of all three parameters offers more flexi-
bility in curve fitting for both the inner and outer regions.
Method 2 (x, K optimization with constant S = 10.4965) offers a
close second choice in the selection of a profile representation
method which suggests that the variation of the S value does
not drastically change the quality of the curve fits.

An important observation which can be made from the results

of the three-parameter fits of method 4 is that the composite
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Figure 4.3 Velocity profile comparisons for two para-
meter optimization on « and K (with S =
10.4965? for favorable pressure gradient data
of Herring and Norbury (1969).
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Figure 4.4 Velocity profile comparisons for two parameter
optimization on « and K (with S = 10.4965) for
constant pressure data of Andersen, et al. (1972).
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Figure 4.5 Velocity profile comparisons for two parameter E
optimization on « and K (with S = 10.4965) for
?ﬂd ?dverse pressure gradient of Andersen et al. !
1972).
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Figure 4.6 Velocity profile comparisons for two parameter
optimization on « and K (with S = 10.4965) for

strong adverse pressure gradient of Andersen
et al. (1972).
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Figure 4.7 Velocity profile comparisons for three parameter
optimization on S, « and K for favorable pressure
gradient data of Herring and Norbury (1969).
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Figure 4.8 Velocity profile comparisons for three parameter
optimization on S, x and K for constant pressure

data of Andersen et al. (1972).
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Figure 4.9 Velocity profile comparisons for three parameter
optimization on S, x and K for mild adverse
pressure gradient data of Andersen et al. (1972).
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Figure 4,10 Velocity profile comparisons for three parameter
optimization on S, « and K for strong adverse
pressure gradient data of Andersen, et al. (1972). i
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similarity profile encounters difficulty in fitting velocity pro-
files measured in strong adverse pressure gradient flows. An
increase in € with pressure gradient can be observed in Table
4.1; this is not entirely unexpected for two reasons. First,
true self-similar behavior is not anticipated in situations with
large adverse pressure gradients since boundary laygr sepafation

may occur before similarity is achieved; consequently, it may

be that the model is not an appropriate one for large adverse
pressure gradients. In the second place, there is a significant
departure of the composite profile from logarithmic behavior in
the overlap region for 8. 0(1) due to the low Reynolds number
effect and the Be effect in the series solution as discussed

in section 4.1. The effects of increasing 8. in the series
soluytion may be offset by increasing x, thereby reducing the
magnitude of the a; and b, coefficients in equation (A.4) (see
Appendix A). This cancelation effect may be observed in the
results of the three-parameter fits in Tables 4.6 to 4.9 which
reveal that the optimized values of « increase with g.. As

a result, it may be concluded that the three parameter optimiza-

tion process adjusts the parameters of the composite similarity
profile to correct an undesirable low Reynolds number effect
or large B effect in the series solution. However, the optimized

value of x is no longer associated with the apparent inverse
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slope in the Togarithmic portion of the profile as taken from
a graph of the profile.

To summarize the investigation of all the optimization
methods, it was found that a significant reduction in error of
the profile fits is realized by optimizing all three parameters
of the profile, namely S, «, and K. However, the three para-
meter optimization masks any physical interpretation originally
associated with the parameters to counteract the low Reynolds
number and large 8. effects. Thus, the parameters S, «, and K
become simply profile parameters which are adjusted to obtain
a close representation of measured data. The objective now is
to obtain correlations for these parameters based upon the four
equilibrium flows of 2700, 8100, 8200, and 8300 in order to

provide the basis for a prediction scheme.

4.3 Parameter Correlations “

In order to develop a profile prediction method, optimized o
parameter values were obtained for the three parameter optimiza-
tion of method 4 and the two parameter optimization of method 2. ;%
Both optimization methods used the negative pressure gradient
flow of Herring and Norbury labeled 2700 and the three Andersen,
et al. (1972) flows, 8100, 8200, and 8300 which cover a range
of Be from about -0.4 to 1.5. The results of the optimized
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data fits for the three parameter optimization of method 4 were
then plotted versus the pressure gradient B a8 shown in Figure
4.11. The first two data stations of flows 8100, 8200, and 8300,
and the third and fourth data stations of flow 2700 were not
included in the correlations because of the observed form of the
experimental ve]oéity profiles which did not appear to exhibit
self-similar behavior; this is reflected in the fact that the
results for these eight data stations showed a substantial devia-
tion from the straight line correlations in figure 4.11. Prospec-
tive correlations which could be used in a prediction procedure
were obtained by fitting a least squares straight line and quadra-
tic curve through the optimized parameter values represented by
the solid symbols. The resulting correlations for the three para-
meter optimization of method 4 are given in Table 4.10. The

RMS curve fit error for the correlations show that the quadratic
curve fits give only a very slight improvement over the linear
curve fits. The three parameter optimization correlations indi-
cate that K is nearly constant; most of the variation occurs in

x which in effect offsets the influence of B, in the series
solution for the outer layer mode. A slight variation occurs

in the S correlation which is contradictory to the experimentally
observed trend for the dimensionless time period between bursts.
The correlation indicates that S increases s1ightly with pressure

gradient while the visual observations of Kline, et al. (1967)
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FIGURE 4-11 Parameter correlations obtained from three-parameter

fits of the composite similarity profile to four sets
of data.
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show that S decreases with increasing pressure gradient. This
contradiction is explained by recalling that the three
parameter optimization tends to mask any physical significance
that may originally have been attributed to the model parameters.
Another point which concerns the value of S is worthy of men-
tion; in the wall-layer the data exhibits a rapid profile vari-
ation which may give rise tb an unnatural weight in the least-
squares error calculation. In addition, wall-layer data points
also have been shown to exhibit velocity measurements which are
dependent upon the pitot probe tip geometry (Andersen, Kays
& Moffat, 1972). A1l of these factors contribute to the conclu-
sion that the slight trend in S with pressure gradient obtained
with the three parameter optimizations may not be significant.
The correlation for « indicates that there is a substantial
influence of pressure gradient on the value of «; this is partly
due to the influence of Be in the series solution which is offset
in the optimization by increasing the « value for larger Be-
Because of this effect and the Reynolds number effect discussed
previously, the values for « obtained from the correlations
presented in Table 4.10 cannot be directly associated with the
inverse slope of the logarithmic region on a graph for profiles

with displacement thickness Reynolds numbers 0(103). The curve

fit data for the x correlation of the three parameter optimization




exhibits the least scatter (lowest RMS error) of the S, «,

and K correlations which tend to strengthen its reliability for
use in a profile prediction scheme.
As a point of interest, correlations based on the two para-

meter optimizations are also included in Table 4,10. It may

e e ek .-

be observed that these correlations show the same trends as the
results based on the three parameter optimizations of method 4.
Note that the dependence of K on Be is weak while the dependence
of « on 8, is strong; for method 2 the RMS is larger than for

the results based on method 4. Since a lower RMS is also observed

in the actual profile fits using method 4, this procedure is con-

sidered somewhat superior to method 2 and the correlations in

Table 4.10 based on method 4 are recommended. ;
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5. MAINSTREAM TURBULENCE

5.1 Introduction

The influence of mainstream turbulence on a fully developed
turbulent boundary layer flow with zero pressure gradient has
been studied by a number of investigators. The experimental
investigations of Kline et al. (1960), Kestin (1966), Huffman
et al. (1972), Charnay et al. (1971) and others, indicate that
mainstream turbulence affects the turbulent boundary layer velo-
city profile in many ways. In particular, a thickening of the
boundary layer with increasing mainstream turbulence level is
observed along with a progressive increase in skin friction.

A general change in the shape of the non-dimensionalized mean
velocity profile has also been documented in which there is a
marked reduction in the “"wake" component of the outer layer as
the mainstream turbulence level increases. Finally, in a ther-
mal boundary layer, the heat transfer at the wall increases
progressively with increasing mainstream turbulence. To con-
sider the possibility of including the effects of mainstream
turbulence Tevel into a boundary layer prediction method, it
is appropriate to first examine the turbulent boundary layer
momentum equation.
The continuity and momentum equations governing nominally

steady turbulent boundary layers have been given in ®quations

(2.1) and (2.2) in connection with the conventional type of
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turbulent boundary layer; these equations still apply when the

mainstream is turbulent. Moreover, the boundary conditions in

equations (2.7) and (2.8) for the mean profile are still correct.

The single turbulence input to the equations is the Reynolds
stress term -u'v'; unfortunately it is not possible to incorpor-

ate the fact that mainstream turbulence is present in the Rey-

nolds stress other than through a correlation. To understand the

reason for this, consider the turbulence kinetic energy g2

défined as,
Q2 =uZ2+VvZ+w?Z (5.1)

where u'2, v'Z and w'2 are the turbulence intensities. For a
laminar mainstream flow g2 approaches zero at the boundary

layer edge but for mainstream turbulence
a2'->q—e2'asy->co; (5.2)
The mainstream turbulence level Ty is defined by

9%

_ 1
Tu2 = ju—ez-(;)— ’ (5.3)

where Ue is the local mean mainstream velocity. For simplicity,

assume that the mainstream turbulence is isotropic, viz.
UZ=yZ=WZasy+=; (5.4)

consequenﬂy,
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u'z, W,W-»Tuz, cee 5 S Y > o, (5.5)

However, u'v' > 0 at the boundary layer edge just as for the

normal type boundary layer.

It should be remarked that the momentum equation (2.2) does
not contain the intensities u'Z, v'Z since these terms are of
lower order; even if these terms were retained in equation (2.2),
the dilemma is still not resolved since the intensities appear
as the difference (u'2-v'Z) which still must vanish at the boun-
dary layer edge for isotropic mainstream turbulence.

Since it is not possibl: to incorporate the fact that main-
stream turbulence is present in the boundary conditions for
either the mean profile or the turbulence terms, the other pos-
sibility of developing a correlation for the eddy viscosity
model parameters is investigated here. In particular, the eddy
viscosity formula in equation (2.55) contains the parameters K
and « and here possible trends for these parameters with Tu will
be considered. In addition, a possible trend in the inner
region profile parameter S will be investigated. Again, this
is carried out by a systematic adjustment of these parameters
to obtain a best fit to data in an equilibrium flow but now
with various levels of mainstream turbulence. The ultimate
objective here is to provide correlations for these parameters

which could be used in a prediction method.
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The data used for composite profile representations was
obtained from the United Technologies Research Center boundary
layer wind tunnel (Blair and Werle, 1980). Several turbulent
boundary layer mean velocity profile data sets were available
for zero pressure gradient flows with mainstream turbulence
intensities ranging from 0.2% to 6.4%. These data sets have
a large number of points that provide a good data base for
profile fits and represent the best available test data at this

time which reflects the effect of mainstream turbulence.

5.2 Composite Profile Data Comparisons

Composite similarity profile representations were obtained
for two methods in which one or two model parameters were
optimized using the direct search technique while holding others
constant. The first profile optimization method used to repre-
sent turbulent boundary layer velocity profile data with main-
stream turbulence was a one parameter optimization in K with
constant values S = 11.025 and « = 0,44789. These constant S
and « values correspond to the values taken from the three
parameter optimization correlations in §4.3 for zero pressure
gradient. Results of this method are presented in Tables 5.1
through 5.3 along with the corresponding profile representations

in Figures 5.1 through 5.3; note that the 18 data stations used
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FIGURE 5.1 Velocity profile comparisons for one parameter
optimization on K (with S=11.025 and «=0.44789)
for mainstream turbulence flow.
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FIGURE 5.2 Velocity profile comparisons for one parameter
optimization on K (with S=11.025 and «=0.44789)
for mainstream turbulence flow.
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FIGURE 5.3 Velocity profile camparisons for one parameter
optimization on K (with S=11,025 and «=0.44789)
for mainstream turbulence flow,
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in these profile comparisons have been taken from the study of
Blair & Werle (1980)and have been arranged here as a 1000 series
in incrﬁasing order corresponding to increasing levels of local
mainstream turbulence. Consequently the data in this sequence
represents a mixture of data stations from the four basic runs
with different mainstream turbulence generators which were
carried out by Blair & Werle (1980). By observing the least
squares error ¢ tabulated in Tables 5.1 through 5.3 and the
velocity profile representations presented in Figures 5.1
through 5.3, it is apparent that the quality of curve fits are
acceptable and that the profile model can be used to demonstrate
the effects of mainstream turbulence on turbulent velocity pro-
files with good success, The optimization results indicate that
there is a trend in which the value of the K parameter increases
with increasing turbulence level Tu. This trend was anticipated
in the sense that it was known that increasingly larger main-
stream turbulence Tevels result in a progressively thicker boun-
dary layer; mathematically larger values of K in the eddy vis-
cosity formula give rise to a thicker boundary layer,

A second profile optimization method was considered in
an attempt to obtain improved velocity hrofi1e fits. This
method was initiated to investigate possible changes in both
the inner and outer layers of the velocity profile and utilized




a two parameter optimization on S and K with a constant value
of « = 0.44789; again this value of « corresponds to the value
taken from the three parameter optimization in §4.3. The
results of this two parameter optimization are nresented in
Tables 5.4 through 5.6 along with the corresponding profile
representations in Figures 5,4 through 5.6.

"An observation which can be made concerning the results

of the two parameter optimization is that the least squares

error is generally smaller than for the one parameter optimiza-
tion; but that the improvement in the quality of the curve fits
is not dramatic. The reason for this behavior may be explained
by close examination of the nature of the curve fits near the

wall; in this region there is a greater curve fit error for the

one parameter K optimization than for the error associated with

the two parameter S and K optimization., The remaining sections
of the model velocity profiles for the one and two parameter

optimizations are similar and exhibit almost the same curve fit

error. In the two parameter fit the value of S adjusts to
minimize this error for the data points nearest the wall.

Unfortunately these data points are usually the most uncertain;

it is also important to note that the S parameter values
obtained from the two parameter optimization exhibit a great

deal of scatter and any attempt to derive a trend from this

i m . v e e n o
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Velocity profile comparisons for two parameter
optimization on S and K (with «=0.44789) for
mainstream turbulence flow.
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FIGURE 5.5 Velocity profile comparisons for two parameter
optimization on S and K (with x=0.44789) for
mainstream turbulence flow.
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FIGURE 5.6 Velocity profi 'Ié comparisons for two parameter
optimization on S and K (with x=0.44789) for
mainstream turbulence flow.
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information was considered to be potentially misleading. Finally,
the magnitude of the S parameter for the Tow turbulence inten-
sity cases did not match the value of S = 11.025 which was
obtained from the S correlation of §4.3. A1l of the above
observations suggest that the one paﬁgmeter K optimization

with constant values S = 11.025 and « = 0.44789 provides the

most realistic method for developing velocity profile predic-
tions. The objective now is to obtain a correlation for the

K parameter based upon the results of this section,

5.3 Parameter Correlations

In order to develop a profile prediction method optimized
parameter values were obtained from the one parameter optimiza-
tion of K with constant values of S = 11.025 and « = 0.44789.
This optimization method examined eighteen zero pressure gradient
data sets with mainstream turbulence levels which cover a range
of Tu from 0.002 to 0.0640, The results of the optimized data
fits for the K parameter were then plotted versus the turbu-
lence level Tu as shown in Figure 5.7. Prospective correla-
tions which could be used in a prediction procedure were
obtained by fitting a least squares straight line and quadratic
curve through the optimized parameter values represented by the

symbhols, The resulting correlations for the one parameter
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optimization on K are

K = 0.01489 + 0.39285 Tu (.0008519) (5.10)

and
K = 0.01567 + 0.30941 Tu + 1.35909 Tu2 (.0008462) (5.11)

for the linear and quadratic fits respectively. Both correla-
tions represent increasing functions of mainstream turbulence
intensity as expected and discussed in section 5.1. The RMS
curve fit errors for the correlations are given in parenthesis
following the equations. These RMS values indicate that the
quadratic curve fit gives only a very slight improvement over
the linear fit; however, one feature of the quadratic correla-
tion is that the value of its intercept is close to the value
0.01591 obtained from the three parameter correlation of §4.3
for turbulent boundary layers affected by pressure gradient,
This indicates that the prediction methods for pressure gradient
effects outlined in §4 and the method for mainstream turbulence
are compatible, fhis compatibility adds to the credibility of
the correlations for use in profile prediction. To obtain a
correlation that incorporates the zero pressure gradient inter-
cept value of K = 0.01591 from §4,3, the quadratic curve fit of
equation (5.11) was rerun with the intercept held at 0.01591.

The resulting correlation for the one parameter optimization
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on K was

K = 0.01591 + ,292727Ty + 1.58500Tw? (.0008465) (5.12)

J where the RMS curve fit error is given in parenthesis. The '}

correlation of equation (5.12) is recommended for prediction

purposes to insure complete compatibility.

———

vt

-102-

——y

- —— e




6. SUMMARY AND CONCLUSIONS

In the present study, a profile model for the mean velocity
in a nominally steady two-dimensional turbulent boundary layer
has been developed. To obtain this profile, the leading terms
in an asymptotic expansion for high Reynolds number for the mean
velocity were derived for both the inner and outer layers of the
turbulent boundary layer. A self-similar behavior in the velo-
city was assumed, In the outer layer, a simple eddy viscosity
formula was assumed containing two parameters « and K; the outer
layer self-similar profile satisfies an ordinary differential
equation which was solved numerically. For the inner layer, an
analytical profile model which is based on the observed coherent
structure of the time-dependent flow in the wall layer was used;
this model contains the parameters x and S. A composite profile
which spans the entire boundary layer was defined and this pro-
file is in general a function of the three parameters (K, x, S).
A computer code was developed for which any or all of the three
profile parameters may be varied to obtain a best fit to a
given set of experimentally measured profile data; this code
is described in Appendix C, A test case for the code is pre-
sented in Appendix D,

There are two potential uses for this optimization procedure.

In the first of these, a very close representation of a given
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set of velocity data may be obtained by carrying out a three
parameter optimization using the code described in Appendix C
even in situations where the flow does not exhibit self similar
behavior., The second use is rather more significant and is
associated with the development of the basic model for a
boundary-layer prediction method. By carrying out a series of
optimization studies for given sets of data, it is demonstrated
in §4 and §5 that trends in the optimized values of (s,«,K) may
be observed; from these trends correlations for the model para-
meters for a phisical «ffect may be obtained. In the present
report, two such - :t:dies have been carried out and correlations
have been developed for the effects of both pressure gradients

and mainst-eam <iurbulence,
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APPENDIX A
OUTER LAYER SIMILARITY SOLUTION

A.1 INTRODUCTION

In this section, the outer layer similarity equation

d dU.I dU1

an te(n)gd + (28 00 G2+ 28 U, =0 (A.1)
is solved to obtain the outer layer velocity profile. Because
of the irregular logarithmic behavior near n=0, two types of
solution methods . *e used and these consist of a series solu-
tion for small n and a numerical solution for large n. The
matching point where the series and numerical solutions are

required to merge smoothly is taken to be = K/2«.

A.2 SERIES SOLUTION FOR SMALL n
The eddy viscosity function e(n) was selected such that

e(n) approaches a linear variation xn exponentially quickly as

- n approaches zero, Consequently for small n, the outer layer

similarity equation (A.1) becomes
U, du,
KN gez + fK“'(]"'ZBc)n} W*‘ 26c U-‘ =0 . (A.2)

For equation (A.2), a series solution of the form
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a % i
Uy =n £ a, n , (A.3)
1 j=0 "

is assumed and the indicial equation yields a double root a=0.
The solution thus takes the form of a regular power series

plus a logarithmic term of the form,

Uy= 2 b n"+{Z a n"} log n, (A.4)
1 po ® n=0 "
with derivatives
du
1 @ n-1, , = n-1 ® n-1
——= % hb_n +{Z nan '}logn+ Ia,n
nopel " sl " =0 "
(A.5)
and
2
d“u
1 ® n-2 -, ® n-2
== £ n{n-1)b_n" “+ {z n(n-1ann -}og n
dn n=2 n n=2 n
a ® _
+ ¥ n ann"'z -9+ an(n-l)nn 2 | (A.6)
n=1 n n=2

As n0, the required behavior for U] is given by equu*%on

(2.63) and is

1 .
Ul-.-K-'logni-Co H

therefore
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= 1 -
a, = - and b =¢C . (A.8)

Recursion relations for a_ and bn are obtained by substitution

n
of Uy and its derivatives from equations (A.4), (A.5), and (A.6)

into equation (A.2). It may easily be shown that

_ -{280+n(1+26c)}an

347 = L (A.9)

and

= -1 3n
bo1 = cryz { v [1 - (28 + n(1+28.))]

+ (23C + n(1+236))bn} . (A.10)

A.3 NUMERICAL SOLUTION OF OUTER REGION FOR LARGE n

A numerical solution to the outer layer similarity equation
(A.1) is calculated in the range ny < n < no Where n is the
matching point to the series solution and % represents the
outer bound of the numerical mesh which is chosen large enough
to ensure no significant change in the solution. In order toobtainan
accurate numerical solution, a small mesh size is needed near
the wall whereas far from the wall, the solution decays
rapidly and a larger mesh may be used. For this reason, a

numerical method developed by Kellor (1969) which permits a
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non-uniform mesh was used in this study; the details of this

method will be described here.

The ordinary differential equation to be solved is of

the form

where

%%% P(n)%%+ a(nju =0, (A.11)

P(n) = ooy (55 + (1428 )n} » (A.12)
28

an) =y - (A.13)

Equation (A.11) is reduced to two first order differen-

tial equations by the introduction of an auxiliary variable v

defined as

gi =y (A.18)

which transforms (A.11) to

E =)V - alnu (A.15)

A non-uniform mesh is defined by

nj = nj_] + hj‘] (A.]G)
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where hs_ is the variable mesh length. Equations (A.14)

and (A.15) are approximated at the midpoint of n and N4
using a central difference for the first derivative and aver-
age values foru and v. As a result, equations (A.14) and

(A.15) become

u-+"'u- _ -|
—J-r"l. = i (Vj+] + VJ-) s (A‘17)

J
and

Vi,qy =V:  =Ds q.
i B T o s
hj 5 (v +vj) 5 (wj+]+wj) . (A.18)

J+l
where

h hs

Pj"’i = P(nj+_21) and qj+i, = q(nj + _21)

The auxiliary variable vj+1 is eliminated using equation (A.17)

to obtain
=2v. + .2_. (u. ..u_) = -p. (u -u,)
J " hy YU g+

h.q.“‘t

3 (uj+]+uj) (A.19)

A similar procedure is used to approximate (A.14) and (A.15)
at the midpoint of ny-1 and nje Eliminating the variable Vi1

in a similar fashion reveals
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2

25 - Ry Ggiga) = Pegliyrugey)
{ ' - Ejiqj:i (u +u ) (A 20)
i 2 s R B .
' i By adding (A.19) and (A.20) to eliminate Vi it may be shown
{ that the finite difference equations reduce to the general
ﬂ form
4
' by Usuy +a5u5 + C5uy_g = d; 5 (A.21)
where 2
h hés
3 = -Tov- 3 (PyyyPy )+ gy *y 95y
hy h2 ;
= -
by =V 2 Piy Y T Gy
SRR SRR L R
E dj = 0 9
; g
Y =
-1

This general form can be used to generate a system of N-1

finite difference equations for a mesh with j=1,2,3,...,N
number of grid points. The system of equations forms a
! tri-diagonal matrix which can be solved in a direct and

efficient manner by using the Thomas algorithm; this
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algorithm defines two functions dj and Fj in which the system

(A.21) may be solved as

where
-b_
F, = 0, F. = ’
1 J aj+Cij_1
o (A.23)
d.-C.s.
-1
87 = Uy, 8, = S J=1 .
1 1 J aj+Cij_]

for j=1,2,3,...,N-1. After the arrays Fj and sj are calculated,
the solution uj is obtained from (A.22) by back substitution

from j=N-1 to j=1.

A.4 SOLUTION PROCEDURE

The procedure used in this study to obtain a smooth match
between the series and numerical solutions at the match point
np is outlined below. Let the solution to equation (A.1) be

représented by

jusi 0<ninm
u-=

l Un > MmN <,

where ug and u, denote the series and numerical solutions

respectively. First, an arbitrary value for the constant C°
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in equation (A.7) is guessed, say 60(1). From this value,

a series solution may now be calculated for 0 < n < Ny SaY
us(]). In particular, the series solution is used at the

match point to obtain us(])(nm) and its derivative dus(])(nm)/dn.
Using ”s(])(“m)’ the numerical solution for n, < n < n  is
calculated, say un(1)(“); the derivative du1(])(nm)/dn is cal-
culated numerically using a six point forward difference for-
mula (Abramowitz & Stegum 1972, p. 914). It is worthwhile

to note that at this step the resulting solution will not have

a continuous derivative at n=n,. A second arbitrary value

for C° is guessed, say Co(z) from which us(z) and un(z) are
calculated using a similar procedure as that stated above.
Again, the resulting solution will not have a continuous
derivative at n=ng-
The final solution with a continuous first derivative at

n=ng is a linear cambination of the solutions previously found.

Thus,

ug = B1us(]) + Bzus(z) for 0 <n<n (A.24)

m!
and

up, = B]un(l) + Bzun(z) for ny, < n <0, (A.25)

where 81 and B2 are constants. One condition imposed on By
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and B2 is

B] tB, =1, (A.26)

in order that u satisfies
u -~ l-1og n+C as n-=>0
K 0

A second condition relating B1 and B2 is that the first
derivatives of equations (A.24) and (A.25) must be equal at

the match point according to

dus(]) dun(1) du (2) dun(z)

S
1{ dn =~ dn } * BZ{ dn dn -

T1=T\m Y\'ﬂm

B

(A.27)

Equations (A.26) and (A.27) can be solved to yield the values
of B; and B,. The true value of Cy is thus

c, = 8160(” + BZCO(Z) . (A.28)

In this manner, a solution to equation (A.1) is obtained con-
sisting of a series solution for n < "m and a numerical solu-
tion for n > n,; this solution and its first derivative are
continuous at the mtching point n=n_. Since equation (A.1)
is a second order equation all derivatives are therefore con-

tinuous at n=np.
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APPENDIX B

THE = FUNCTION

The = function is defined as

{1

(n) = fn e*° Jxeyz Jye'tzdt dy dx , (B.1)
)

(o] 0

which satisfies the differential equation

= 4 2nz=Terf (n) . (8.2)

The following expansion is readily obtained

-n? . Z‘J.Gt(.]')nz"j"'.l

z(n) = & (B.3)

LTJ

where

a(@) = ad-1) + 5, a(1) = 1, (8.4)

which is uniformly convergent for all n. An asymptotic expan-

sion used to evaluate =(n) as n + « is

) Y © s_1y00
2(n) - B log n + o2 -4 LA, (8.5)

j=1 j23,4

where Yo is Euler's constant equal to 0.57721566...
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APPENDIX C

THE OPTIMIZATION CODE




PROGRAM MAIN(INPUT,O0UTPUT,TAPES=IN®UT, TAPE6S=0UTPUT)
COMNMON/VAR/IVARIZ) 4 XOT3Y
EXTERNAL F

THIS IS THE MAIN PROGRAM WHMICH INITIATES THE DATA FITTING
8Y CALLING SUBROUTINE PROFIT. .

.
L J
.

NPAR - NUMBER OF PARAMETERS DESIRED FOR THE PROFILE FIT.
REFERENCE3: AN OPTIMIZATTON TECHNIQUE FOR THE DEVELOPMFNT
OF A TWO-DIMENSIONAL TURBULENT BOUNDARY LAYER
MODEL, YUHAS, L.J., MASTER'S THESIS
LEHIGH UNIVERSITY

“«0odeas
.0 sy 90w
s 0 ss s e

L]
L]
]

ITERM = MAXIMUM NUMBER OF CYCLES TO BE PERFORMED IN ORSRCH
(NORNMALLY 50}

® & * IPRINT=1 IF PRINTING OF INTERMEDIATE RESULTS IN ORSRCH IS

DESIRED DURING THE COURSE OF THE OPTIMIZATION.

=0 IF NO PRINTING IN DRSRCH IS DESIRED.

¥ ® * EPS - THE EXIT YOLERANCE IN DRSRCH IF,SAY.EPS=1.E~5 THE
ITERATION WILL CONTINUE IN ORSRCH UNTIL THE PARAMETERS
BEING OPTINMIZED HAVE CONVERGED TO 5 SIGNIFICANT
FIGURES

THE PARAMETERS CAPKoS+KAPPA TO BE OPTIMIZED ARE INITIALIZED
IN THE INPUT
WAR(I)= 0 NOT OPTIMIZED
= 1 OPTIMIZED
1 CAPK
2Ss
3 KAPPA

WHERE I

000000000000 NNNOO00NONNO0N00

i READ(5,10) (IVARCI) yI21,3)
| NPAR=0
i DO 30 I=1,3
| 30  NPAR=NPAR®IVAR(I)
READ (5420) ITERM, IPRINT .EPS.NA
CALL PROFITINPAR,ITERM,IPRINT,EPS,NA)
10 FORMAT(3I2)
20 FORMAT {214 .E6.1,14)
STOP
END

eNg=-




OO0

a6 asas
aeedes
L B BE B B BN )

AN OO0

OO0
e
]

SUBROUTINE PROFITINPAX,ITERMyIPRINT,EPS,NA)

OIMENSION ITITLE(S) LUNIT (&) XF(3)

DIMENSION LSYS(2), IDEN(15)+X{15),UE(15) ,UTAU(15)  DUEDX(15),PPLUS(1
+5) sOELTAL15) yDELSTRI15), THETAI15) 4SHAPE (15) JEPSI{15) ,DELT (15)
DIMENSION PPLUSE(15) ,UTAUE(15),ES(15},TOPLUS(15),C(15),BETE (15)
DIMENSION CF(15) +CFE (15) ,CTI(15),CAPK(15) 4 XKAP(15) ,8T (15),TUT(15)
OIMENSION FS(3),DX(3),OXERR(3I) +DXF (3) 4D XERF (3) +XN(15)

COMMON/ DATA/NPAR yNDP ¢ XNU yUI»DUIDX+YDE90) yUD (90 )9 DL STRIUAL90)
+YOPL (20007 ,UAPL(1000) (NPPY

COMMON/VAR/IVARL3) 4X0(3)
COMMON/UOUT/NO+ETA(400) ¢ DETA(GB0) U &00) ETAMN, ETAC,COUT,CIN,
LS TNOTP,DELIN,DELOUT ,USTARLBETAC

EXTERNAL F

DATA LUNIT/2HFTe2H M 2HIN92HCN/oLSYS/7HENGLISH 7H METRIC/,EBAR/D./
DATA HGHT/0.1/

DATA NPPT/400/

NO=NA

® & SUBROUTINE PROFIT READS IN THE EXPERIMENTAL OATA AND
® INIVIATES THE OPTIMIZATION AT EACH DATA STATION 8Y
® % CALLING SUBROUTINE DRSRCH

¢ * INPUT IDENVIFICATION FOR DATA RUN
ID - A FOUR DIGIT NUMBER (USER SUPPLIED) TO IDENTIFY DATA
IUNIT = ZERO FOR ENGLISH UNITS,ONE FOR METRIC UNITS
ITIVLE- TITLE OF OATA SEV (50 CHARACTERS MAX TMUM)

READ(S5+100)ID IUNIT, (ITITLE(I)I=1,5)
TUPL=TUNIT+1

IUP3=IUNIT+3

CONV=12,

IF(IUNIT.EQ.1)CONV=100.

NPAR=SNPAX

® ® XNU = KINEMATIC VISCOSITY
® # NSTA - NUMBER OF DATA STATIONS

READ(S4102) NSTA
INPUT PARAMETERS FOR PLOTTING

NCYC - NO. OF X CYCLES

NPLTPP - NO. OF ZERC PLOY TICKS ON Y AXIS
XLC - LENGTH OF EACH CYCLE ON X AXIS
INCPL ~ INCREMENY LABELS ON v AXIS

NL - NO. OF NON-ZERO TICKS ON Y=AXIS

XL = LENGTH BETWEEN TICKS ON Y-AXIS

READ(5+90) NCYCo NPLTPPXLCoXLoNLoINCPL
FORMAT(2I44+2F1029214)

D0 10 N=1,NSTA

ID=1IDe1

IDEN(NI=ID

WRITE(6+103) (ITITLE(I)sI=1+5),1I0D

® % X = LOCAL VALUE OF X-LOCATION ON THE WALL
® UE - LOCAL MAINSTREAM VELOCITY
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OO0

[+ X1 X3z X1

OO0 AQAOOOOOO

OOQOOO0

LK 2R B BN |

«s¢s s 99

UTAUE - ESTIMATE OR EXPERIMENTALLY QUOTED VALUE OF UuTAU
DELTA - EXPERIMENTAL VALUE OF BOUNDARY LAYER THICKNESS
DELSTR- EXPERIMENTAL VALUE OF DISPLACEMENT THICKNESS
THETA - EXPERIMENTAL VALUE OF MOMENTUM THICXNESS

DUEDX - LOCAL VALUE OF THE MAINSTREAM VELOCITY GRADIENT

s s e a4

READ!5,101)XNY

XN{N)=XNU

READI(S 4204 )X INYsVE [N) UTAUEIN) yDELTA(ND ;,DELSTR IN) ¢ THETAIN)  DUEDX (N
+) +BETE(N)

READIS,130) TUTIN)

® CFE - EXPERIMENTAL VALUE OF THE SKIN FRICTION COEFFICIENT
® SHAPE-SHAPE FACTOR

CFEIN?=2.% {UTAUEIN)/ZUE(N)) ®®2
SHAPE (N)=DELSTRIN) /THETA (N)

IF AN ESTIMATE OF UTAU IS NOT AVAILABLE.THE VALUES OF
UTAU ARE TO BE READ IN AS ZERO AND AN ESTIMATE FOR
UTAU IS COMPUTED USING THE LUDWEIG-TILLMAN CORRELATION.
NOTE THAT THIS IS ONLY USED AS A STARTING ESTIMATE

FOR UTAU IN THE OPTIMIZATION PROCEDURE.

IF(ABS(UTAUE(N)) .6T.1.E~16160 TG 15

CFEINI=0.2U6%(UEIN)*THETAINI /{XNUSZONVY)*® (~-0,268) *10.%%(~.678°SHI
+PE(N})

UTAUEI(N)=UEINI*SQRT(0.5*CFE(IN))

15 CONTINUE

* % * PPLUSE-EXPERIMENTAL VALUE OF THE INNER REGION PRESSURE
A g GRADIENT PARAMETER

PPLUSE (N)==XNUBUE( N} *DUEDX (N)/ (UTAUE (N} **3)
WRITE(6¢10SIX(N) JLUNIT(IUPL) JUE(N) JLUNIT(IUPL)

WRITE?64106) DUEDXIN) JUTAUEIN) JLUNITIIUPL) 4 DELTAIN? 4LUNITIIUP3) (O€!
*STRINI sLUNIT(TUP3) s THETA (NV ,LUNIT(IUP3)

® & & YD - Y LOCATIONS OF THE EXPERIMENTAL OATA POINTS
* & % UD - EXPERIMENTALLY MEASURED MEAN VELOCITY AT YO

26

25
27

SET UP AXIS FOR PLOTTING

IFIN.GT.NPLTPP) GO TO 26

IF(N.GT.1) GO TO 25

CALL PLOTIXLC®NCYC*2442.09~3)

CALL LOGAX(NCYCe XLCy HGHT)

CALL SHFTYAX(NL,NPLTPP XL INCPL,HGHT)

GO0 To 27

IFIN.GT.NPLTPP+1) GO TO 25

CALL PLOTIXLC®NCYC ¢2.¢ ¢=XL® (NPLTPP=1},4~3)
CALL LOGAX (NCYCy XLCy HGHT*

CALL SHFTYAX(NLyNSTA=NPLTPP,XLyINSPLyHGHT)
GO Y0 27

CALL PLOT(0.0yXLo~3)

CONTINUE

READ(S,102) NOP
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99

20

[z Xz Xe]

OO0

c
c
c

c
c
c

30

40

OPTIMIZAYION COMPLETE.

READ(5+99) X0(1),X0(2),X0(3)
FORMAT(3F10.0}

READIS91087) (YD(I)+I=2,NDP)
READ(54107) (UOCI) +»I=1,NOP)
WRITE(6,108) NOP,LUNIT(IUP3)
WRITE(6+109) (YD(I),UD(I),I=1,NOP)
00 20 Isl,NDP

YO (I)=YD(I)/CONV

DELTA (N)=DELTA (NV/CONV
DLSTR=DELSTR(N)/CONV
USTAR=UTAUE (N} ZUE!N)
UI=UE(N)

DUIDX=DUEDX(N)

INITIALIZE STEP SIZES FOR DRSRCH

DX{1)=.001
DX(2)=0.5
0X:(3)=0.02
DXERR{1)=0.00001
DXERR(2)=0.0001
DXERR(3)=0.0001

ARRANGE VARIABLES BEING OPTIMIZED

IN ORDERED FORM FOR OPTIMIZATION IN ORSRCH.

JC=0

DO 30 I=1,3

IF(IVAR(I) .EQ.0)GO0 TO 30
JC=JC+t

XFLJCYI=X0(T)
OXFIJC)=DX(I)

DXERF (JCYI=DXERR(I)
CONTINUE

INITIATE OPTIMIZATION IN DRSRCH

CALL DRSRCHINPAR,3¢FyFFeFSoXF,0XF,OXERF ,ITERM, EPS, ITER,

1 IPRINT,1ER)

JC=1

D0 40 I=1,3
IF(IVAR(I) .EQ. 0) GO TO 4D
X0:I)=xF(JC)

DX (1)Y=DXF (JC)
DXERR (I ) =OXERF (JC)
JC=JCet

CONT INUE

EPSI(N) =SQRT (FF)
EBAR=EBAR+ PSI (N)
DELTA(N) =DELTAIN)®CONV
CAPK (N? =X0 (1)

ES INY=XD (2)

XKAP (N)=2X0(3)

UTAUCN) =USTAR®UE IN)
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CF(NI=2.% (UTAUIN)/UE (N)) ®*=2
CI(N)=CINF(ESIN) sTOPLUSINI 4X0:3) 400 l.)
BT (N)=BETAC
WRITE(64110) ITER,EPSTI(N) 4 NPAR
WRITE(6+111) (XB(JY +J=1e3) 4UTAUIN)
WRITE6,5112)CIIN), TOPLUS (N}
WRITE(6+113) BEVAC
c MATCH CONOITION CRITERIA FOR INNER AND OUTER REGION VELOCITY PROFILES
WRITE(64114)
WRITE(6+115) ETAM,NO.ETAOQ
c INNER AND OUTER LENGTH SCALES
WRITE(6,200)
WRITE(6.201) ODELIN,DELOUT
WRITEI6+116)
DO 50 I=1,NDP
YP=YD(I)/DEL IN
UDP=UDBII)/USTAR
UAP=UA(T )/ USTAR
UDPMUAP=UDP=UAP
50 WRITE (6,117) YP,UD(I),UDP,UALI),UAP,UDPMUAP

SET UP FOR PLOTTING
COMPUTE ENOUGH PLOT POINTS FOR A SMOOTH CURVE
FOR ETA LESS THAN ETAM

QOO0O

NNPTS=400
ETPL=ETAM~1,SDELIN/DELOUT
DELP=ETPL/FLOATINNPTS)
YOPL(1)=1.000°DELIN
00 55 I=1,NNPTS
IF(I.EQ.1) GO TO 54
YOPLII)=YDPL(I-1) *DELP®DEL OUT
54 YOL=YOPL (I)/DELIN
ETAD=YDPL(I) /DELOUT
CALL UASER(XKAP{N) +BETAC,COUT,ETAD,UL,UL0,EPS)
WAKE=U1-ALOG(ETAD) /XKAPC(N) -COUT
UAPL(I)I=USTAR® (UPLYDL+S; TNOTP,CINy XKAP (NI 0.+) ¢ WAKE)
55 CONTINUE '
00 56 I=1,NNPTS
YOPL {I)=({FLOAT (NCYC) *XLC)/7ALOG(10.®*®FLOATI(NCYC))® (ALOGIYDPL (1) JOEL
1INY)
VAPL (I} =XL*NL®UAPL (I) Z(NL®INCPL®USTAR)
56 CONTINUE

C
c FOR ETA GREATER THAN ETA MATCH, USE THE NUMERICAL
c SOLUTION ALREADY CALCULATED

NUA=NNPTS+NO

NEX=NNPTS+1

00 59 I=NEX,NUA

YOPL(IV=ETA{I-NNPTS) *DELOUT

YOL=YDPL (I)/DELIN

ETAD=ETA (I-NNPTS)

WAKE=U (I-NNPTS)=ALOG (ETADY /XKAP (N} ~COUT

UAPL (I)=USTAR® (UP{YDL ySy TNOTP yCINs XKAP(N) 9 0c) ¢+ HAKE)
YOPL(I)=(FLOAT(NCYC) *XLC)/Z7ALOG(10.**FLOATINCYC))®LALOGLIYDPL tT) JOEL
1IN

UAPLITI=XULONLOUAPL (I)/ (NL® INCPLPUSTAR?
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59

60

65
66

10

70

100
101
102
103
106
105
108

107
108

109
110

111

112
113
1146

115
116

117

118

CONTINUE

CALL PLOT(YDPL(L1),UAPL(1)3)

00 60 I=2,NDP

CALL SYMBOL((FLOAT(NCYC) *XLC) /ALOGI10.**FLOATINCYC)) ®ZALOG YD) /D
LELINI Y o XL®NL*UDLT) ZUNL®*INCPLPUSTAR) 32074040 09 ~1}

CONT INUE

CALL PLOT(0490eed)

XLIM=(FLOAT(NCYCI*XLC) /ALOG(L10.**FLOATI(NCYC))* IALOG{YOINDP)/DELIN)
*)

00 65 I=1,NUA

NUAL=I

IFIYOPLII) «GT.XLIM) GO TO 66

CALL PLOTIYDPLII)UAPL(I),2)

CONTINUE

XID=YDPL {NUALY ¢2.*HGNHT

YID=UAPL (NUAL) -HGHT/ 2,

CALL NUMBERIXIDy YIDe HGHY y IDENIN) 404 92HTI &)

CONT INUE

EBAR=EBAR/FLOATINSTA)

WRITE(64118) (ITITLECI) yI=1+5)4LSYS(IUPY)

00 70 I=1,NSTA

WRITE(6+119) IDENCI) ¢ XUJ) yUE(T) JUTAUE (I) o XNII) s BETE (I)4DELTALI) o
$DELSTRII) o THETALI) »TUT(I)

WRITE(6+120) NPAR

00 80 I=1,NSTA

HRITE(64121) IDEN(TI) 4BT (L) UTAUCIIsSSCID oCAPK(I Vs XKAP(I)EPSTIII ),
*TOPLUS(IV,CI(I)

WRITE(6+122) NSTA.EBAR

FORMAT :21I4,5A10)

FORMATIEL10.3)

FORMAT(IW)

FORMAT (1H1 45X 5A10+2 ~ 2,14)

FORMAT(7F10.0,F10.2)

FORMAT (/95X 92X = 24F6.391X9A244Xo2UE= 2,FT.291XeA2,2/SECE)

FORMAT (/14X ,2EXPERIMENTAL VALUESE,/ 4 14Xy2DUEDX= £ ,F7.3¢2 1/SEC2,/
LollXo2UTAUS 24FT7 391X 0A202/SECL9/ s LUXs2DELTAX 2oFT oleeiXsA29/ 910042
2DELTA®= 2,FToholXeA29/,16Xoe2THETAS 24F7 491X ,A2)

FORMAT (8F10.0)

FORMATU/ 28Xy 2ZEXPERIMENTAL VELOCITY PROFILEZ2+/9 19X 1292 POINTSZ ¢/ 01
LeXy2Y (29A24%) 246X y2U/VUE 2)

FORMAT (L3N oFT7.4e5X F6.4)

FORMAT(//9SXe ZAFTER 2,12 +2 ITERATIONS IN DRSRCHy, FIX)= 2,E13.642 b
CITH A2,12,2X,2PARAMETER FIT2)

FORMAT (5Xo 2CAPK 22oE13.692X02S 329E13.6¢2X s 2KAPPA 22,E13.6+2Xy UTA
CU =2,€13.6+/)

FORMAT (SXy2CIN® £,E13.695X¢2TOPLUS: 2,E13.6)

FORMAT (/18X 2BETAC = 2,E13.6)

FORMAT (/745X 2MATCH CONDITION CRITERIA FOR VELOCITY PROFILE?)

FORMATISX s ZETAM = Z2oFT.0olXo2ND = 2G4 LXo2ETAQG = £4FT by

FORMAT (1H1,13X, 66H® EXPERIMENTAL PROFILE * ANALYTICAL PROFILE
1 * U+ DEVIATION ®,4/,14Xe 1H® 206Xy 1H® 22Xy 1H® 416Xy LN® /40
2X9 2HY®hXy 1H®¢5Xs SHUD/UE.7Xse 3HUDS,4Xs 1H®5Xy SHUAZUE,S)
39 3JHUA® eXe 1H®y3X, 9GHUD® = UAe,4X, 1H*)

FORMAT (SXoF7.292X9 L1H® 43X o F7 oo XyF7.2¢3Xy IN® IXsFTeltg2NoFTe 2,y
13Xe  LH® 3IXFY.6bXye 1H®)

FORMAT LN 0277777779523 %eS5A00 ¢/ o0l X o2 (2,AT o2 UNTTSY 2,

L4 77077+39%X o 2EXPERIMENTAL VALUESZ2,74 11Xc2I02, BN o2 XSTAZSX o 2UE 245
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¢ 2UTAUZ 48X s ZNU 2, X o 2BETA 246X 4 2DELTAZ, LX o ZOELTA®2,3Xy2THETA 2, 5X,
*+2TUR)
119 FORMATI10X ¢Tloo 3N oF 60 392X sF 6029 3XoFBhelo oSN oFB o7 eI FBeIplel2XsF7.4))
120 FORMAT(////415Xo #UNSTEADY WALL ¢ SIMILARITY MOCEL - FULL PROF
SILEZ T4 92X o2PARAMETER FITR,//,11X, 2HIDyS5X, WHBETA,S5Xe GHUTAU,
*6Xy 1HS,8Xe 1HK,8X, SHKAPPA,2Xy THEPSILON,4&Xys 3HT0¢,8X,

*2HCT)
121 FORMAT (10XoTGoiXoFBales2XeFBe3+2XeFToT02XsF 8.6 e3XoFTo0,2(1X,FB8.6),

13X4F6. 3
122 FORMAT (/420X ,2MEAN EPSILON OVERZ,I4y2X ¢ 2STATIONS =2,F8.6)
130 FORMATIFL0.0)
200 FORMAT(//45X+2LENGTH SCALES?)
201 FORMAT(SXy20ELIN = 2,F7.5,4X,20ELIUT = 2,F7.5)
RETURN
END
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101
102

103

106

10%
106

107

SUBROUTINE DRSRCH {NyNOIMeF,FlUgFSeXeDXeEPSTI,MAXeEPSIFLITER,IPRINT,

1 IER)
EXTERNAL F
DIMENSION FS{NOIM) » XINOIM), OXINOIM), EPSIINOIM)

ORSRCH -~ DIRECT SEARCH ROUTINE

VARIABLES
N = NUMBER OF PARAMETERS
NDIM = DIMENSION OF ARRAYS
F = FUNCTION NAME
Fio = FINAL VALUE OF F
FS = VECTOR OF INTERMEUIATE F VALUES
X « VECTOR OF INITIAL AND FINAL PARAMETER VALUES
DX - VECTOR OF INITIAL STEP SIZES
EPSI - VECTOR OF CONVERGENCE SRITEREON
MAX - MAXINUM NUMBER OF ITERATIONS
EPSIF = FINAL CONVERGENCE CRITEREAN
ITER = NUMBER OF ITERATIONS
IPRINT = PRINT CONTROL
IER - ERROR FLAG
IER=Q
ITER=IER
IF (IPRINT.EQ.1) NRITE (6.,120)
FiazF(X)
I=0
I=1e1
NSTEP=0
X3=x{I)
F3zFb

IF (IPRINT.EQel) WRITE (695121) ITIR,F2y (X(J)+0XIJI) oJuiyN)
ITER=ITER+1

IF (ITER.GT.MAX) GO TO 118
NSTEP=NSTEP+1

X2=X3

F2=F3

X{I)=XLI)eDXLID

X3=X(1)

F3aF (X}

IF (IPRINT.EQ.1) NRITE (641210 ITERF3,yIXIJ) DXL} gduLoN)
IF (F3-F2) 104s104,105
X1=X2

Fi=fF2

GO0 YO0 103

IF INSTEP-1) 106,106,107
X1=x3

Fi=F3

OX(I)=~-DX(I)
X{I)=sX{I)eOXCI)

A3=n2

F3=F2

60 T0 103

ITER=ITEReL

IF C(ITER.GT.MAX) GO TO 118
X22=X2%%2

X322X3*X 3
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108
109

11¢

1114
112

113
114
' 115
116

117
118

119

120
124
122
123

124
c

F2MF3=F2-F3

AFAC=F1% (X2-X3)=X1%F2MF3+F2®X3-F3%X2

IF {AFAC.EQ.0.) GO TO 119
BFACSX1®X1*F2NF3=F1® (X22~X32) ¢ X22%F3=X32%F2
Xa==BFAC/ (2. "AFAC)

X(I)=Xu

Fo=F (X}

IF (IPRINT.EQ. 1) WRITE (65122) ITERyFiy (X{J)eDXIJ) qJ=1,yN)
OF=F4=-F2

IF (ABS(2.%0F/ (FueF2)) LTL.EPSIF) 350 TO 114

BELX=X&=~X2

IF (ABSIDELX).LT.EPSI(I)) GO TO 116

IF (OX{(I).LT.0.) DELX=-DELX

IF (DF) 108,108,111
IF (DELX) 109,109,110
X3=X2

F3=F2

X2=Xb

F2=F4

GO YO 107

X1=X2

Fi=F2

X2=X4

F2=Ft

GO0 TO 107

IF (DELX)Y 112,112,113
X1=X&4

Fi=zFs

GO TO 107

X3=X&

F3=F4

GO TO 107

IF (N.EQ.1} RETURN
FS(I)=F&

IF (I-1) 102,102,115
IF (1-N) 102,116,116

IF (ABS(2.%(FS(I)=FSII-1))/IFSIIIeFSII~1)1).LT EPSIF)I RETURN

00 117 J=1i,.N

DXiJV=OX{JI/1.2

GO TO 101

IER=1

WRITE(6,120L) MAX

RETURN

IER=2

WRITE (6+123) X1 ,F1oX2,F2.X3,F3
RETURN

FORMAT (1H1,3Xe SHCYCLE«8X, 1NF,13X, &HHXCI),9Xs SHOX(I)})

FORMAT ( SH E +I3+3XeEL13.6+6(2¢4EL3.86))
FORMAT ( SH I +I13¢3XeEL3606(2X¢EL13.6))

FORMAT (SX, &HXI= ,E£13.69 6H Filz JE13,60 6M X2= 4E13.6,
1F2= 4E13.69y 6H X3m €13.6, 6H F3s ,E13.6)
FORMAT(SX,20RSRCH FAILED TO CONVERSZ IN 2414 o2ITERATIONS 2)
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| FUNCTION FIX) .
i DIMENSION X(3) ;
; COMMON/ VAR/IVAR(3) X0 (3) i
COMMON/DATA/NPAR(NOP ¢ XNU » UT, DUIDX, ¥3(90) 4UD (90, DLSTR,UA(90) ,

‘ +YOPL$1000) JUAPL{1800) +NPPT .
' COMMON/UOUT/NO ,ETA (%001, DETA(%00),J(%00),ETAM, ETAG ,COUT4CIN, -
i 1S, TNOTP, DELIN, DELOUT , USTAR4BETAC 3
| DATA EPS/1.E-10/

)
H

C FUNCTION F COMPUTES THE ROOT-MEAN-SIUARE ERROR :
C BETWEEN THE MEASURED EXPERIMENTAL VELICITY PROFILE DATA ,
j C AND THE THEORETICAL VELOCITY PROFILE. THE TMEORETICAL !
- C PROFILE CONSISTS OF THE UNSTEACY WALL LAYER MODEL ‘
: C FOR THE INNER LAYER AND A SELF-SIMILAR PROFILE MODEL
) C FOR THE OUTER REGION. !
c i
g ARRANGE VARIABLES INCOMING FROM DSRCH IN CORRECT ORDER i
JC=1 B
00 10 I=1,3 i
IF(IVAR(I) .EQ.0)GO TO 10 0y

X0(I)=X (JC)
JC=JC#+1
10 CONTINUE

CALL UTAUF TO DETERMINE UTAU

o000

XKAP=X0 {3) ‘
S=X0(2) o
CAPK=XD (1)

CALL UTAUF (CAPK,XKAP)

COMPUTE RMS ERROR i}

e

(¢ XXy

JLOC=2

F=0. ¥
UAIL1)=0.000 5{
00 20 I=2,NOP

YOP=YD(I)/DELIN

ETAD=YD(I)/DELOUT i}

COMPUTE THE DEFECT PROFILE AT THE DAFA POINT EITHER

FROM THE SERIES SOLUTION FOR ETAD LESS THAN ETAM

OR BY INTERPOLATION OF THE NUMERICAL SOLUTION FOR .

ETA GREATER THAN ETAM .1
3

QOO0

IF(ETAD.GT.ETAMGO YO 30
CALL ULSERI(XKAP,BETAC,COUT,ETAD,U1,U10,EPS)
WAKE=z UL ;
GO TO &0 5
30 00 50 J=JLOC.NO
X1=ETALJI-ETAD
X2=ETA(J=-1)-ETAD
X3=AL®X2
IF(X3.LT.0.)6G0 TO 60
50 CONTINUE ’ :
WAKE=0. X
GO TO &0 i

e
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60 JLOC=J
WAKE=UJ)=tULJI=UtJI~1)I® X1/DETALJ-1)
40 WAKEaWAKE=-ALOG(ETAD)/XKAP=-COUT
UAL{I)=USTAR® (UP(YOPyS¢TNOTP4CINsX<APy 04 ) ¢WAKE)
FTY=UD(I)-USTAR®(UP (YDP+S+s TNOTPyCINy XXAP s0.) +HAKE)
20 F=Fe+FTSFY
F=F/FLOAT (NDP)
, 70 CONTINUE
; RETURN
’ END
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OO OO0

10

20

FUNCTION EDYVIS{XKAPCAPK,ETA)
DATA NoXN/Gy0e257

FUNCTION EDYVIS EVALUATES THE EDOY VISCOSITY FUNCTION

OR ITS DERIVATIVE FOR THE OUTER LAYER OF A TURBULENTY
BOUNDARY LAYER. THE FUNCTION APPROACHES KAPPASETA

FOR SMALL ETA, EXPONENTIALLY QUICKLY. FOR LARGE ETA

THE EDDY VISCOSITY FUNCTION APPROACHES THE OUTER CONSTANT
K ALGEBRAICLY .

INPUT PARAMETERS XKAP - VON KARMAN £CONSTANT2
CAPX - OUTER REGION £CONSTANT2 K
ETA <~ SCALED OUTER REGION COORDINATE

I=0

G0 TO 10

ENTRY EDYVISD

I=1

C=(CAPK/XKAP ) S®N
X1zEXP{-C/ETA®®N)

X2=1,-X1

IFI(I.EQ.0)EDYVIS=CAPK
IFII.EQ.1)EDYVIS=0.00
IFLETA.6T.10.0) GO TO 20
IFITI.EQ. 0)EDYVIS=XKAPSETA®X2%* XN
IF(I.EQ.1)EDYVISEXKAPOX2S®XN® (1,-2%X1/{X2°ETA®*N))
RETURN

END
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OO0 OO0 O0O00

o000

10

QOO0

SUBRQUTINE UOUTER( XKAP,CAPK)

OIMENSION UC(400,2),C0(2)4BA(2),F(400),0EL (L00),A(400),B814C0),
1C (400} H
COMMON/UOUT/NOETA(400), DETA(LOD) 4UL%00) +ETAM, ETAQ ,COUT,CIN,
1S+ TNOTPoDELIN, DELOUTUSTARLBETAC

DATA EPSO¢ALPHALEPS/1.E-10+1.0241.E-10/ .

SUBROUTINE UOUTER COMPUTES A NUMERIZAL SOLUTION FOR THE

OUTER REGION VELOCITY DEFECT PROFILE GIVEN THE INPUT

VARIABLES XKAP <« VON KARMAN 2CONSTANT:

CAPX = OUTER REGION EDDY VISCOSITY s£CONSTANT2

BETAC - CLAUSER PRESSURE SRADIENT PARAMETER

NO - NUMBER OF MESH POINTS BETWEEN THE MATCH
NITH THE SERIES SJLUTION (FOR SMALL ETA) AND
THE BOUNDARY LAYER EDGE.

——
prrny

ON INPUT
ETA(I) - MESH POINTS BETWEEN ETAM ANO ETAO
DETA(I) - VARIABLE STEP SIZE (INITALLY UNIFORM AND
EQUAL TO H FOR FIRST 6 MESH POINTS, THEN
SUCCESSIVELY INCREASING BY A FACTOR ALPHA)

s

ST WS .

un =~ NUNERICAL SOLUTION FOR VELOCITY DEFECT AT ETA(IY
ETANM = MATCH POINT BETWEEN SERIES AND NUMERICAL SOLUTION
ETAD - LARGEST VALUE OF ETA(I)

couT - OUTER REGION LOG-LAN 2CONSTANTZ

FIX THE MATCH POINT
ETAM=0.5"CAPK/ XKAP
FIX THE OUTER VALUE OF ETA

X1=1.42.*8ETAC

X2=X1~1.

X3=2=(2.*BETAC*1.)/7(2.*BETAC)

IF(XL.GT<0.)ETAO=SQRT (=2 .*CAPK®ALIG(EPSOI/X1)
IFIX1.EQ.0.)ETAG=-SQART (ABS (CAPK/X2) ) *ALOGLEPSO)

IF(N1.LT.0.)ETAD=SQRT (ABSI{CAPK/X1)) *EPSO** (X3) *

S et g e pam e a2 YA TRV

DEFINE THE MESH s

Ni=N0-1

ETA(L)=ETAM
H2(ETAQ=ETAM)/ thot {1 .=ALPHA®®(NO=5) )/ (1 .=ALPHA))
DO 10 I=i,N1 .
IF(I.LT.6)DETA(I)=N
IF(I.GE.6)DETA(I)=ALPHAPDETA(I-1)
ETALI¢L)=ETAII)DETALI)

CONTINUE

CALCULATE THE ELEMENTS OF THE TYIDIASONAL MATRIX FOR
THE NUMERICAL SOLUTION FOR THE DEFEST PROFILE

XP=ETA(L1)+0.5%H
EP=EDYVIS(XKAP ,CAPKy XP)
EPO=EDYVISO(XKAP 4CAPK  XP)
PIP=(EPDeX1®XPY/EP
QJP=Y2/EP
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20

o000

OO0O0

L0
c
c
c

50

[ XX s X1

(s X+ X )

30

anNaAd

DO 20 J=24N1

GAM=1,

IF{(J«GE.5) GAM=ALPHA
X3=0.25%DETALJI*ODETALN)
X=0.5®0ETALJ)

XM= xP

XP=ETA(J) eXb
EP=EDYVIS{XKAP,CAPK, XP)
EPD=EDYVISD(XKAP ,CAPK, XP)
PIMN=PJP
PJIP=(EPD+X1*XP)/EP
QJIMN=QJIP/GAM

QUP=X2/EP
AfJIS=1,=GAM=XK®* (PJP-PJM)} +XI* (QJP+AIM)
BlJY=1.¢XLPPJP +X3I*QJP
ClJISGAN=XL*PINSXI*QUNM

DEFINE THO INITIAL GUESSES FOR CoOurv

Col(1y=1.
€0(2)=0,.75%C0(1)

CALCULATE THWO NUMERICAL SOLUTIONS FIR U FOR ETA GREATER
THAN ETAM FOR GUESSED VALUES OF COUTER

00 30 x=1,2

CALL ULSERIXKAP,BETAC +CO(KY ETAMyJC(1,K),UCDS,EPS)
Fl1)=0.

DELI(1)=UC{1,K}?

00 40 J=24N2

X1=zAtJVeClJ)*F (J~1)

FlJr==BlJI/X2

DEL {J)==-C(J)*DEL (J~-1) /X2

BACK SUBSTITION

UCINO.K)=0.

00 50 J=2,N1

J1=Ng=Je¢d

UC{J1,K) aF (J1) ®UC(JL +1,K) ¢DEL (J1)}
CONT INUE

CALCULATE DERIVATIVE OF NUMERICAL SILUTION AT
ETA=ETAM WITH SLOPING DIFFERENCE FORMULA

UCDN= («27%.°%UC {1,K)+600.%UC(2,K)=500.°UC(3,K)
14600.%UC(LyK)-150.%UC(5,K) ¢24,%UC(5¢K)) 71120.% M)
CALCULATE OIFFERENCE BETWEEN NUMERIZAL ANDO SERIES DERIVATIVE
SOLUTION AT EVA=ETANM,

8A(K)=UCDS~UCDN
CONTINUE

COMBINE TWO NUMERICAL SOLUTIONS TO O3TAIN THE TRUE
VALUES OF U(I) AND COUT

B1==8A12)/BAL1)~BAL2))
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60

82=1.-81
CouT=81°C0(1)¢82%C0(2)

00 60 Jsi.NO
UlJI=B1%UC{J+1)¢82%UC(Js 2)
CONTINUE

RETURN

END
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SUBROUTINE ULSER(XKAPBETAC.COUT,ETA,UL,ULD,EPS)
DATA NMAXZ100/

SUBROUTINE ULSER EVALUATES THE VELOZITY DEFECT FUNCTION UL
AND ITS DERIVATIVE U100 AT THE INPUT VALUE OF ETA, FROM

A SERIES SOLUTION !OBTAINED BY THE METHOD OF FROBENTOUS)
NHICH IS VALID FOR SMALL ETA AND WHIZH SATISFIES THE
ORDINARY DIFFERENTIAL EQUATION FOR THE SIMILARITY DEFECT
PROFILE Ui,

INPUT PARAMETERSE XKAP
BETAC
cour
EPS

VON KARMAN 2CONSTANT2

CLAUSER PRESSURE GRADIENT PARAMETER
OUTER REGION LOG-LAW 2CONSTANT#
CONVERGENCE TOLERANCE

Ui=U1D=0.

X1=ALOG(ETA)

X2z2.*BETAC

XI=X2¢1.

FACA=1,/XKAP

FACBsCOUT

ASUMaF ACA

BSunsFACS

ASUMO=8SUMD=0,

00 10 I=1,NMAX

X&=FLOAT(I~-1)

XSaxhel,

X6=1./7(XS* XSS XKAP)

X7=(X2¢XH*X3)* X6

FACB=(-FACA®SXT ¢(X7-X6)*FACA/XS)SETA

FACAa=FACACETA®X?

ASUM=ASUMeFACA

BSUM=8SUMeFACS

TESTA=ASUMD

TESTB=8SUMD

ASUMD=ASUMDeXS*FACA

BSUMD=8SUMOD+ XS *FACS

IF(I.LE.2)G0 TO 10

IFIASUMD.EQ.0.0)GO TO §

IF(ABS(1.-TESTAZASUMD) .GT.EPS)IGO TO 10
5 IF(ABS{1.-TESTB/BSUMD) .LTL.EPSIGDO TD 20
10 CONTINUE

PRINT 30 NMAX XKAP+BETAC,COUTLETALEPS
30 FORMAT(//+1X+2SERIES CALCULATION IN ULSER HAS NOT CONVERGED AFTER:?

*Tho2X92TERMS 297/ 91X o 2XKAPE 2,E12.5¢3X+2BETAC® £,E12.5,

0;¥Q;¢COUT= 24E12 «5 o3 X +2TOLERANCE= £yE12 «S59/7)

0

20 U1=BSUM+X1*ASUM

ULD={BSUMD*X1®ASUMD®ASUN) /ETA

RETURN

END

-134-




SUBROUTINE UTAUF(CAPK,XKAP)
COMMON/QOATA/NPAR ¢NDP ¢ XNU +UI s DUIDX,¥2(90)4UD(90),0LSTR,UA( D),
+YOPL(1000) +UAPL(1000) ,NPPT
COMMON/UQUT/NOJETA(400) o DETA(L00) 4 JCL00) ETAM, ETAQ 4COUT,CIN,
1Sy TNOTP,DELIN, DELOUT ,USTAR,BETAC

DATA EPS,MAX/1.E~-8,20/

c
. c UTAUF COMPUTES THE VALUE OF UTAU ITZRATIVELY USING
: c THE MATCH CONDITION AND ALSO THE OUFER REGION DEFECT
c PROFILE
! Cc
' c EPS =~ EXIT TOLERANCE FOR TWO SUCCESSIVE ITERARES FOR UTAU
' c MAX - MAXIMUM NUMBER OF ITERATIONS IN UTAUF
c
CIN=CINF (SsTNOTP yXKAPs0ec s1,.)
REX=UI/XNU
USTRA=USTAR
00 10 I=1,MAX
DELOUT=DLSTR/USTRA
DELIN=1./(REX®USTRA)

BETAC=-0UIDX*DELOUT/ (UI®USTRA)
IF (BETAC.LT.~.50) BETAC==.50
CALL UOUTER(XKAP,CAPK)
XA=1./ (ALOG(DELOUT /DEL IN) /XKAP +CIN=-COUT)
IF(I.NE.1)GO TO 20
FB=USTRA-XA
‘ USTRB=USTRA
! USTRA=XA
' 60 TO 10
i ) 20 FA=USTRA-XA
X1=USTRA-FA® (USTRB-USTRA) / [FB=FA)
TEST=ABS (1. ~USTRA/X1)
IFITEST.LT.EPSIGO TO 30
IFC(ABS(FB) .LT.ABS(FA)) GO YO 15
USTRB=USTRA
FB=FA
15  USTRA=X1
10 CONTINUE
WRITE(6,40) MAX,USTRA,X1
40 FORMAT(/,1Xs2ITERATION NAS FAILED T) CONVERGE IN UTAUF,
LAFTERZ,I4y2# ITERATIONSZ,/,1Xs2LAST TWO ITERATES FOR UTAU ARE#,
22€16.84/)
30 USTAR=USTRA
RETURN
END

e
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FUNCTION CINF(SeTNOTP, XKAP+PPLUS,0ITPR)

FUNCTION CINF USES THE WALL COMPATIBILITY CONOITIONS TO
CALCULATE THE INNER REGION CONSTANTS CINER AND TNOTP FOR A
GIVEN VALUE OF S FOR BOTH THE TEMPERATURE ANDO THE VELOCITY
PROFILE IN THE INNER LAYER OF A TURBULENT BOUNDARY LAYER.
ROOTPR = 1, FOR THE VELOCITY PROFILE CASE.

PPLUS = 0. FOR THE TEMPERATURE PROFILE CASE.

LK BE BN BN B

DATA GMyROOTPIEPSIoITMX/~0.504539348109179,1.772645385090552+1.E~1
*04,20/

JC=0

X1=0.,5*S*ROOTPR*ROGTP I*XKAP

S2=S*S

X2=2 ., *XKAP*S2%PPLUS/ 3.

AL=EXP(=1,-X1-X2)

DO 10 K=1,ITMX

X3=ALOG CAL)

Xh=Alel.

AL2=AL®AL

XS=SQRT (1.-AL2)

C=AL

ALZAL<(XL® XS+ X*XT 1, AL +X2% (AL2¢6.SAL®L.) /X0L) /L-AL®X1/XS ¢
[4 XI+1.Z7ALOX2%LAL2¢2.%AL®3.) 7 (XU*XS))

IF (ABS(AL/C~1.).LE.EPSIIGO TO 20

CONTINUE

JC=1

AL2=AL®AL

Xb=1,-AL2

TNOTP=AL2®%S2/ X4

X5=SQRT (X&) .
CINF=X1/XSeGMN=0,5%ALOG(S2¢TNOTPY e1./7 (AL ¢1.)
* +(0.25%%2% (1,.-9.%AL2) ~PPLUS*TNOTPSXKAP® (3. AL2=4"AL¢+1.)/73.0/X4
CINF=CINF/XKAP

IFtJC.EQ.0)G0 TO 30

WRITE(6,40)Ky TNOTP ,CINF, AL »C

sSTOP

FORMATC(1X, JO0HNO CONVERSENCE IN CINF AFTER,I%e 11H ITER.TIO“S'/'
’lxé 7H;N?TP 29E15.5¢10X9e 6HCINF =,E15.5, 10Xy 4HAL Z9E155:10X+SHALP
*29EL15.547)

RETURN
END

|




FUNCTION UPLYPSeTNOTPL,CIN XKAPLPILUS?

* FUNCTION UP CALCULATES THE TIME-MEAN TEMPERATURE OR VELODCITY
* PROFILE IN THE WALL LAYER OF A TURBULENT BOUNDARY LAYER
% FOR SPECIFIED VALUES OF THE PARAMETERS LISTED BELOW.
* YP = Y4,SCALED WaLL LAYER COORDINATE
S = S »CYCLE TIME PARAMETER
_TNOTP ~ TQ+y SINILARITY PARAMETER
CIN - INNER REGION LOG-LAW ZONSTANT CI OR 81
XKAP - KAPPA (VON-KARMAN £CONSTANT#) OR KAPPA-THETA
PPLUS =« WALL LAYER PRESSURE GPADIENT PARAMETER. (PPLUS
IS ZERO FOR THE TEMPERATURE PROFILE CASE.)
NOTE2A CALL TO UP SHOULD NORMALLY BE PRECEDED 8Y A CALL TO
CINF WHICH COMPUTES CIN AND TNOTP, GIVEN S.

LR BRI B B B B BRI B )
de s s sdassay
se s seags

A0 O0

DATA X1eSRPI/~0.4006539368109179,1.7724538509055167 .3
PIX)==2,.*PPLUS®(X+TNOTP) /3, .
RIXIZCIN¢(0.5%ALOG (X +TNOTP)=X1)/XCAP(. S*PPLUS®(S2¢2.%TNATP)
QAIXeY s ZAIZ(2.%XOXP LD PYE2, %N ZA/SAP]
X Yo ZAIZR T ( (2.9 X410 ) PNT XD OASATIPINI =0, (25 PSRPI® 6.2 XPX41,.10Y
. «0.75*X®ZA) 7 (SRPI*XKAPY
WIXoYeZAIZ(XO¥403.OX X00.75)2YIXPIXPX+2,.5)%2A/ SRP] ~3,%X%X

¢ % 5 PRECIS IS THE VALUE OF X SUCH THAT EXP{=X®X) MAY B8E COMPUTED
® WITHOUT INCURRING AN UNDEFLOW.

PRECIS=225.9361455

Q 000N
L ]
[ ]

u ) S$2=S*S
TPS23S2+TNOTP {.
Hx0.5%YP/SORT (S2+TNOTPY b
H0=0.5%YP/SQRT (TNOTP) |
ERFH=ERF (H)

ERFHO=ERF (HG)

EXPHSEXPHD=0.

IF(H.LT.PRECISIEXPHSEXPL ~-H®H)

IF(HO LT .PRECIS)EXPHO=EXP (~HO*HO)

UP=TPS2* (RIS2)*Q (HeERFHLEXPH) #2 (Hy SRFH,EXPHY)

* ~TNOTP®* (R{0 ) *QIHO,ERFHOLEXPHO) ¢+2 LHD JERFHO, EXPHE))
IFIPPLUS.EQ.0.)GO TO L0 )
IF(H.LT.PRECISIGO TO 20
UPxUP-(.5% (S2%S212.%S2%TNOTP) *PPLUS
GO TO 10

26 IFIHO.LT.PRECISIGO TO 38
WH=N (Hy ERFH, EXPH)

HHO=HO®®he 75
GO TO 0

20 WHsWIHERFH, EXPH)
WHO=N(HO ,ERFHO LEXPHO)

40 UP=UP+TPS2%P (S2) *WMH=TNOTP*P (0. )"NHD

10 UP=UP/S2
RETURN
END

—————— ey e —— ————
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FUNCTION XIiX)
DATA SRPI,GAMGEPSI/L1.772453850905516+0.57721566490153286+1.E~10/

FUNCTION XI EVALUATES THE TRIPLE INTEGRAL IN THE UNSTEADY
WALL LAYER MODEL.THE TOLERANCE EPSI IS THE NUMBER OF
SIGNIFICANT FIGURES DESIRED FOR XI AND ITS DERIVATIVE

XIP AND IS WMACHINE DEPENDENT.

XI=08IF=1
IF{X.LE.O0.) RETURN
GO 70

-ENTRY XIP

XI=0.31IF=2

IFIXeLE.Ds) RETURN

X2=X*X

FAC=2.%X%X2

M=100

SUM=(0.

SUMT=0,

TERM=1.

IF(X.GE.5.30) GO TO 110
IF!IF.EQ.2Y GO TO 100
TERM=X

ALPMA=L,

00 2 I=t.M
TERM=TERM®FAC/FLOAT(2%1¢1)
SUN=SUMeTERM®ALPHA
IFLABS(ISUM=SUNMT)I/SUM) .LT.EPSI) 6O TO 3
ALPHA=ALPHA®1./FLOAT(I+1)
SUMT=SUM
XI=0.25%EXP (=X 2)*SUM
RETURN

00 & I=1,M
TERM=TERM®*FAC/FLOAT(2%1=-1)
SUM=SUMeTERM/FLOAT(T)
IF(ABS{ {SUM=-SUNTI/SUM) LT.EPSI) GO TO S
SUMT =SUM
XI=0.25%EXP(~X2) *SUN
RETURN

IF(IF.EQ.2) GO TO 120

00 6 I=1,M
TERMSTERM®FLOATI(2%1I=-1)/FAC
TERMA=TERM/FLOAT (1)
IF(TERMA.LT.EPSI) GO TO 7
SUM=SUM¢TERMA
XI=SRPI®LALOGIX2) +GAMO~-SUNM) /8,
RETURN

00 8 I=1,M
TERM=TERMOFLOAT(2%I-1)/FAC
IFITERM.LT.EPSI) GO YO0 9
SUMsSUNSTERM
XI=SRPI®(1.6SUMN /(4o *X)
RETURN

ENO
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SUBROUTINE LOGAX{NCYC+XLCyHGHT) ) :
SUBROUT INE LOGAX PLOTS THE X=-AXIS LIGARITHMICALLY :

INPUT PARANETERS
NCYC =  NUMBER OF CYCLES
XLC = X LENGTH OF ONE CYCLE
WGHT =  HEIGHT OF AXIS LABEL
= 0 FOR NO LABEL
DIMENSION XLOG (8)
TCK1=HGHT
' IF{HGHT.LE.0.) TCK1=XLC/20.
‘ TCK22TCK1/2,
C SET UP EIGHT TIC MARKS PER CYCLE
00 1 I=1,8
1 XLOG ¢I) =ALOG10 (FLOAT (I#1)) ®XLC
DO 3 N=1,NCYC
XN=N
XNML=XN=1.
XLCNM1=XLC®XNML
IF(N.EQ.1) CALL PLOT (XLCNM1,TCK1,3)
CALL PLOTU(XLCNML,0.+2)
00 2 1=1,8
X=XLCNM1 #XLOGCT)
CALL PLOT(X40.42)
CALL PLOTIX,TCK2,2)
2 CALL PLOT(X40.+2)
=, XNLC=XN®XLC
, CALL PLOT(XNLC 4000 2)
: 3 CALL PLOTUXNLC,TCK1,2)
! IF(HGHT.LE.0.) GO TO 5
' NUM=10%®NCYC
FAC=3,%HGHT/7.
TNUM=FLOAT (9-NCYC) *FAC
NCYCP1=NCYCe 1
DO & N=i,NCYCP1
NNUM=NCYCP1=N
XNUM=FLOAT (NNUM) ®XLC-TNUM
TNUM=TNUMe FAC
YNUM==1,5® HGHT
CALL NUMBE RCXNUM oV NUM o NGHT o NUM, 0o o 2HIS)
& NUM=NUM/10
XSYMaXLCP*FLOAT (NCYC) /2.-2.®FAC
YSYM2-3, BHGHT
CALL SYMBOL (XSYM,YSYN,HGHT s 2HY #4080 0¢2)
5  CALL PLOT(0c00403)
RETURN
END

QOO0 0




SUBROUYINE SHFTYAX (NLNPLTPP+XLsINCPLJHGHT)
SUBROUTINE SHFTYAX PLOTS THE Y-AXIS FOR A MULTIPLE NUMBER
OF CURVES ON THE SAME PLOT WITH SHIFTED Y<-AXIS ORIGINS

INPUT PARAMETERS
NL = NUMBER OF POINYS LABELED NON-2ERO
NPLTPP = NUMBER OF POINTS LABELED ZERO
{EQUAL TO NUMBER OF AXIS SHIFTS)
xL = LENGTH BETWEEN AXIS TICS (SPACING)
INCPL = e
HGHY = HE IGHY OF AXIS LABEL
TCK=HGHT
IF{HGHT LE.0.) TCK=XL/10.
N=NPLYPP eNL~-}
CALL PLOT(TCK,04+3)
CALL PLOT(0es0eo 20
Y20,
DO 1 I=1.N
YYeoXL
CALL PLOTIO.»Y, 2}
CALL PLOT(TCK,Y, 2}
1 CALL PLOTI0.+Y,2)
IF(MGHT.LE.0.) GO YO &
NUNM=NL®INCPL
FACz6.®HGHT/7 .,
XNUM==2,5%FAC
YNUM=Y-HGHT/2.
D0 2 I=1,NL
IF(NUM.LE. 99) CALL NUMBER(XNUM,YNUN,HGHT NUM.0 .o 2H12)
IFINUMGGT.99) CALL NUMBERCXNUM=FACZ YNUM HGHT s NUMy0 oo 2HI3?
YNUM= YNUM=XL
2 NUM=NUM-=INCPL
XNUM==1,5%FAC
00 3 I=iNPLTPP
CALL NUMBE R{XNUMYNUMy HGHT yNUM,0.,2HT1)
3 YNUM=YNUM=-XL
XSYM=<=3,®HGHT
YSYM=XL®FLOATIN) /2.~-FAC
CALL SYMBOL(XSYMoYSYMHGHT s2HU®390492)
o CALL PLOT(0:¢90.+3)
RETURN
END

AN OOOOO

-140-

- p— e - -




APPENDIX D
TEST CASE

The turbulent boundary layer prediction code presented in
Appendix C is set up to guide the user in understanding the
code's operation. Comméents are used to explain input variables
and to denote where major operations are taking place.

The user supplied code input begins with "PROGRAM MAIN";
an integer value for each of the model parameters K, S, and «
is read in a 312 format. This integer value determines if the
parameter is to be optimized or not; an integer value of 0 indi-
cates no optimization for the corresponding variable and 1 indi-
cates parameter optimization. The next variables to be read
are "ITERM", "IPRINT", "EPS", and "NA" in 214, E6.1,I4 format.
The "ITERM" variable denotes the maximum number of cycles to be
performed in direct search, "IPRINT" is a print control para-
meter which determines if printing of intermediate optimization
results is included in the output, The "EPS" parameter is the
exit tolerance for convergence of the optimized parameters and
“NA" denotes the number of mesh points for the outer region
numerical solution to the similarity equation. A typical value
of "NA" is 350 to ensure good accuracy and should be increased

in applications where there is an intense velocity variation
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in the outer layer. After reading in all of these variables,
the program then calls "SUBROUTINE PROFIT" which reads in exper-
imental data pertinent to the run.

"SUBROUTINE PROFIT" begins by reading in a four digit
identification number for the data run "“ID". The choice of
an identifier is up to the user's discretion and will be suc-
cessively incremented by one for each subsequent data station’
that is examined in the data set under consideration. The "ID"
identifier is followed by "IUINT" which denotes whether the
input experimental data is in English (ID=0) or metric units
(ID=1). The selection of metric or English units is important
to the input since this determines a conversion factor which
is used in the code. A user supplied title for the data set
is then read which is printe’ in the output. The number of
data stations "NSTA" is read followed by input parameters for
plotting. These plot paraimters are read as "NCYC, NPLTPP,
XLC, XL, NL, INCPL" and are accompanied by self-explanatory
comments describing their function in the code, Their purpose
is to allow maximum flexibility in obtaining plotted profiles
to meet the requirements of the user, The only plotting comment
worth mentioning here is that the "NPLTPP" parameter denotes
the number of curves to be plotted on one plot using the shifted
Y-axis method, If there are more data stations than the NPLTPP
parameter (NSTA>NPLTPP), then another plot will be drawn to

plot the remaining curves,
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The data that follows is read for each data station and
the sequence described in this paragraph is repetitive for
subsequent data stations. First, the kinematic viscosity "XNU"
is read in E10.3 format followed by "X, UE, UTAUE, DELTA, DELSTR,
THETA, DUEDX, BETE" in 7F10.0, F10.2 format; these variables
represent the x-lpcatioﬁ on the wall, local mainstream velocity,
experimental value of us experimental value of the boundary
Tayer thickness &, experimental value of displacement thick-
ness &%, experimental value of momentum thickness o, local
value of the velocity gradient dUe/dx, and the value of tne
Clauser pressure gradient parameter Be respectively. An optional
read statement follows which reads the value of mainstream
turbulence level "TUT" for examination of mainstream turbulence
effects. The number of experimental velocity data points "NDP"
is read next followed by the starting values of the model para-
meters K, S, and « denoted by x¢(1), x¢(2), and x¢(3) respec-
tively. These starting values are used to initiate optimiza-
tion in the direct search subroutine. The experimental velocity
profile data points are then read in F10,0 format starting with
the x-coordinate values which signify the distance from the
wall "YD". These are followed by the corresponding y-coordinates
values which denote the nondimensionalized velocities "UD"

represented by the ratio of velocity over the local mainstream
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velocity u/U,. "SUBROUTINE PROFIT" then calls "SUBROUTINE DRSRCH"
to initiate the optimization of the profile parameters.

The direct search subroutine calls all other subroutines
to evaluate the optimization function F(x). After the optimiza-

tion has been completed, information pertinent to the model is

printed out and a plot of the analytical profile and experi-
i mental data points is made. A listing of the output for one
' data station is presented on the subsequent pages. An output
| sumary similar to that in Table 5.1 for all data stations is

printed at the end of the output listings for all data stations.
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UT MAINSTRPEAM TURBULENCE TEST DATA

X = 40.300 FT UE= 98.76 FT/SEC

EXPERIMENTAL VALUES
DUEDX= J.000 1/SEC
utTau= 4.029 FT/SEC
DELTA= «5900 IN
DELTA®= -0824 IN
THETA= <0573 1IN

EXPERIMENTAL VELOCITY PROFILE

61 POINTS
Y (IN Us7UE
0.0008 0.0000
«0053 «3870
.0065 «4110
« 0075 o l50
«0085 4750
«0095 + 4900
«0111 »5230
«0123 «5340
-0133 «5460
<0155 «5610
«0176 <5730
<0197 «5830
-0211 «5900
0223 « 5940
« 0247 «6010
« 0267 «5090
« 3287 «6150
«0302 «6200
«0368 «6350
«0038 26500
<0508 «6650
+ 0566 «6750
«0633 «6840
«87C07 «6950
« 0765 «7030
<0838 « 7100
«0907 «7230
«0963 «7290
+1034 «7380
«1183 « 7650
«1163 «7510
«1237 «7%90
«1308 7660
«1473 «7830
«1651 «8010
«1824 «8160
«2007 «8300
«2178 + 80660
«2353 « 8600
«2528 8720
«2709 « 8860
«2877 - 8900
-« 3059 «9110
« 3405 «9330
«3756 «9%20
+ 4109 +«9680
o bl 55 + 9820
«b806 «9910
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«5153
«5505
«5853
«6205
«6553
«6906
«7255
«760%
« 7953
«3309
« 8653
«9903
«9355

« 84960
« 3980
1.0000
1.0000
1.0000
l1.0Cc00
1.0000
1.0000
«99970
1.0000
1.0000
«999¢
« 9990




cvyCLe € Xty oxXtI)

E 2 «128712E-03 «168000€E-01 +100000E-02

- € 1 «103942F-~-03 «178000E-012 «100000E-02
2 «101533€-03 «188000€~-01 «100000E~-02

S 3 «117028€-03 «198000€E-01 «100000€=-02

I [ «100118€~-03 «186303€E~01 «100000€E~-02

I S «100113€-03 0 180L232E~01 «100000E~-02

. I [} «1060412€-03 «18L110€-01 «100000E~-02
I 4 «100142€-33 «1846131E~-02 «1000GAE~-02

AFTER 7 ITERATIONS IN ORSRCH, FiX)=

CIN= «573116E+01 TIPLUS= «276188E-02

BETAC = 0.

MATCH CONDIVION CRITERIA FOR VELOCITY PROFILE
ETAR = «0206 NG = 3so ETAD = «3208

LENGTH SCALES

DELIN = ,00006 DELOUT = ,16306
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«100056E-01 WIT4 2 ¢
CAPK = L 18LL101E-01 S = .110254E+G2 KAPPA 2 ,4Lk7900E+00

PARAMETER FITV

UTAU =

«15889€+0.

o




Y4

g.00
10.98
1367
15,54
17.64
19.68
22.99
25448
27.55
32.14
36.0€
bleBY
L2.71
L6420
51417
55,31
59,45
€2.56
76.23
90.73
105,20
117.2%
131.13
158,408
173.60
18?2.89
199,49
248,20
228449
2bQe92
256425
27%.96
38S. 14
362.02
377.8%
415.76
451419
487 hta
$523.69
$61.19
595.99
633.69
705,37
778,08
861,24
922.89
995,60
1067, 68
1140460
1212.49
1285.44
1357.50
1630.63
1502.93
157%.22
1607.52
1721.27
1792.%3

'FEEREEREEENEFENEEENENFERRENRE NI IS I A B A B B I B R S A NI SRR N B I L BT R N N R B I B B B BRI

EXPERIMENTAL PROFILE

uosue
¢.0000
3870
6110
iSO
«4750
4300
52310
53040
<5460
+«5730
«5830
+5900
«5944G
.6010
«5090
«51590
«6200
«6350
«6500
«6650
«6750
«68643
6950
<7030
<7100
7230
7290
«7380
«T450
+7510
7590
«7660
«7830
.8010
+8160
« 8300
« 84560
«8600
«8720
<8864
«89810
«9110
«9330
+9520
+ 96340
98210
<9210
99649
» 9980
1.0000
1.0000
1.0000
1.0000
1.0000
L.0000
« 93990
1.0000
1.00¢0

uD+
u‘uo
9.19
3,786
10.57
11.28
11 .64
12,02
12.68
12.97
13.32
13.64
13.86
1%.01
1h.11
1h.27
1hets6
1%.60
18,72
15.08
1544
15.79
16.03
164246
16,50
16.69
16,98
17.47
17.31
17.53
17.69
17.683
18.02
18,19
18.59
19.02
19.38
19,74
20.09
20,42
20,71
2L.0%
21,32
21.63
22,16
22,64
22,99
23,32
23,53
23,65
23,70
23,75
23.78
23,78
23,7%
23.7%
23,7%
23,72
23.,7%
23.7%
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ANALYTICAL PROFILE

UA/UE
0.000D
« 3458
« 3926
«h249
« 4521
4750
«5043
«5217
«5339
» 5552
«5707
<5832
+590%
«5960
- 5062
«5137
« 6206
» 6254
+ 5439
+5598
«6732
«6329
«6929
»7029
« 7183
«7191
<7270
7333
«Thil
«Thih
«TS6T
«762%
<7695
«7858
«8025
« 8181
- 83329
«8478
« 83613
« 8702
« 3860
« 3972
<9080
« 3263
« 9420
« 9568
« 9655
« 9741
<9807
+ 93859
» 3899
»9928
« 9950
+9966
«9977
+» 3985
« 9990
« 999
» 9996

-148-

uas
0.08
8,23
9,32
10.09
10,74
11.28
11.98
12.39
12.68
13.18
13.55
13.89
1002
14415
16.39
14.57
14,70
14,85
15.29
15.67
15,99
16.22
16,65
16.69
16.87
17 .08
17.26
1701
17.64Q
17.77
17.92
18.190
18.27
18.66
19.06
19 ‘“3
19.80
zu .13
2045
20.76
21.08
21.38
21.56
22.00
22.37
22.68
22.93
23.13
23.29
23,41
23.51
23.58
23.R3
23.67
23.69
23.71
23,72
23.73
23.76
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U+ DEVIATION

UDe = UAe
g.000002
«977 821
« 136 296
“H76712
o563 362
«356673
o bl 207
«292 195
288 LBl
«138810
+0555L9
-+ 004265
-+009292
~.068285
-.122776
-.111887
-.133214%
=e1289%5
=210 bkt
-.233038
~e196993
~e4B7 478
~«21151%
-.188 “39
"172 6“
-oilgq’k
~e 095266
-.101808
=-.072509
--001638
-0056‘35
-.079563
~.083912
~.065391
~. 036515
~.050706
-.091510
-.0"2955
~.031608
~e04L9303
~«010408
+ 019784
071655
«159205
« 237 851
<207 082
«390685
« 402199
«362097
+286 886
200 R
«170250
«118963
<381 484
« 055169
+036646
«a00 301
+ 015 381
«0092316
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